Collaborative Research: Socially Assistive Robots
合作研究:社交辅助机器人
基本信息
- 批准号:1139078
- 负责人:
- 金额:$ 402.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Socially Assistive RobotsLead PI/Institution: Brian Scassellati, Yale UniversityThis Expedition will develop the fundamental computational techniques that will enable the design, implementation, and evaluation of robots that encourage social, emotional, and cognitive growth in children, including those with social or cognitive deficits. The need for this technology is driven by critical societal problems that require sustained, personalized support that supplements the efforts of educators, parents, and clinicians. For example, clinicians and families struggle to provide individualized educational services to children with social and cognitive deficits, whose numbers have quadrupled in the US in the last decade alone. In many schools, educators struggle to provide language instruction for children raised in homes where a language other than English is spoken (over 20%), the fastest-growing segment of the school-age population. This Expedition aims to support the individual needs of these children with socially assistive robots that help to guide the children toward long-term behavioral goals, that are customized to the particular needs of each child, and that develop and change as the child does. To achieve this vision, this Expedition will advance the state-of-the-art in socially assistive human-robot interaction from short-term interactions in structured environments to long-term interactions that are adaptive, engaging, and effective. This progress will require transformative computing research in three broad and naturally interrelated research areas. First, the Expedition will develop computational models of the dynamics of social interaction, so that robots can automatically detect, analyze, and influence agency, intention, and other social interaction primitives in dynamic environments. Second, the Expedition will develop machine learning algorithms that adapt and personalize interactions to individual physical, social, and cognitive differences, enabling robots to teach and shape behavior in ways that are tailored to the needs, preferences, and capabilities of each individual. Third, the Expedition will develop systems that guide children toward specific learning goals over periods of weeks and months, allowing for truly long-term guidance and support. Research in these three areas will be integrated into socially assistive robots that are deployed in schools and homes for durations of up to one year. This Expedition has the potential to substantially impact the effectiveness of education and healthcare for children, and the technological tools developed will serve as the basis for enhancing the lives of children and other groups that require specialized support and intervention. The proposed computing research is tied to a comprehensive student training program, bringing a compelling, engaging, and grounded STEM experience to K-12 students through in-school and after-school activities. It also establishes an annual training summit to provide undergraduates with the multi-disciplinary background to engage in this promising research area in graduate school. Finally, by establishing a brand name for socially assistive robotics, this effort will create a central authority for the distribution of high-quality, peer-reviewed information, providing a coherent focal point for enhancing outreach and education.For more information visit www.yale.edu/SAR
社会辅助机器人首席PI/机构:布赖恩Scassellati,耶鲁大学这次考察将开发基本的计算技术,使机器人的设计,实施和评估,鼓励儿童的社会,情感和认知成长,包括那些社会或认知缺陷。 对这项技术的需求是由关键的社会问题驱动的,这些问题需要持续的个性化支持,以补充教育工作者、家长和临床医生的努力。 例如,临床医生和家庭努力为有社交和认知缺陷的儿童提供个性化的教育服务,仅在过去十年中,美国的数字就翻了两番。 在许多学校,教育工作者努力为在讲英语以外的语言的家庭(超过20%)中长大的儿童提供语言教学,这是学龄人口中增长最快的部分。 该探险旨在通过社交辅助机器人支持这些儿童的个人需求,这些机器人有助于引导儿童实现长期行为目标,根据每个儿童的特定需求定制,并随着儿童的发展和变化。 为了实现这一愿景,这次远征将推进社会辅助人机交互的最新技术,从结构化环境中的短期交互到适应性,参与性和有效性的长期交互。这一进展将需要在三个广泛且自然相互关联的研究领域进行变革性的计算研究。首先,远征将开发社会互动动态的计算模型,以便机器人可以自动检测,分析和影响动态环境中的代理,意图和其他社会互动原语。第二,远征队将开发机器学习算法,使其适应和个性化交互,以适应个人的身体,社会和认知差异,使机器人能够以适合每个人的需求,偏好和能力的方式教授和塑造行为。第三,探险队将开发系统,引导孩子们在数周和数月的时间内实现特定的学习目标,从而提供真正长期的指导和支持。这三个领域的研究将被整合到社会辅助机器人中,这些机器人将部署在学校和家庭中,持续时间长达一年。 这次考察有可能对儿童教育和医疗保健的有效性产生重大影响,开发的技术工具将成为改善儿童和其他需要专门支持和干预的群体生活的基础。拟议的计算研究与全面的学生培训计划相关联,通过校内和课后活动为K-12学生带来引人注目,引人入胜和接地的STEM体验。它还建立了年度培训峰会,为本科生提供多学科背景,以便在研究生院从事这一有前途的研究领域。最后,通过建立社会辅助机器人的品牌名称,这一努力将创建一个分发高质量、同行评审信息的中央权威机构,为加强外展和教育提供一个协调一致的焦点。www.yale.edu/SAR
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Scassellati其他文献
Time-dependant Bayesian knowledge tracing—Robots that model user skills over time
随时间变化的贝叶斯知识追踪——随着时间的推移对用户技能进行建模的机器人
- DOI:
10.3389/frobt.2023.1249241 - 发表时间:
2024 - 期刊:
- 影响因子:3.4
- 作者:
Nicole Salomons;Brian Scassellati - 通讯作者:
Brian Scassellati
RoSI: A Model for Predicting Robot Social Influence
RoSI:预测机器人社交影响力的模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.1
- 作者:
H. Erel;Marynel Vázquez;S. Sebo;Nicole Salomons;Sarah Gillet;Brian Scassellati - 通讯作者:
Brian Scassellati
Stage # 1 : Mutual Gaze Stage # 2 : Gaze Following Stage # 4 : Declarative Pointing Stage # 3 : Imperative Pointing
阶段
- DOI:
10.7551/mitpress/1624.003.0012 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Brian Scassellati - 通讯作者:
Brian Scassellati
Toward Measuring the Effect of Robot Competency on Human Kinesthetic Feedback in Long-Term Task Learning
衡量长期任务学习中机器人能力对人类动觉反馈的影响
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Shuangge Wang;Brian Scassellati;Tesca Fitzgerald - 通讯作者:
Tesca Fitzgerald
Breathe Easy: Harnessing Robots for Stress Reduction During Pediatric Oral Challenges
轻松呼吸:利用机器人减轻儿童口腔治疗过程中的压力
- DOI:
10.1016/j.jaci.2024.12.156 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:11.200
- 作者:
Aiden Chun;Ellie Mamantov;Ursula Stahl;Brian Scassellati;Stephanie Leeds - 通讯作者:
Stephanie Leeds
Brian Scassellati的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Scassellati', 18)}}的其他基金
HCC: Medium: Proactive Physical Assistance for Collaborative Human-Robot Teams
HCC:中:人机协作团队的主动物理援助
- 批准号:
2106690 - 财政年份:2021
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: The role of trust when learning from robots
协作研究:向机器人学习时信任的作用
- 批准号:
1955653 - 财政年份:2020
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
CHS: Small: Watch One, Do One, Teach One: An Integrated Robot Architecture for Skill Transfer
CHS:小型:观看一、做一、教一:用于技能转移的集成机器人架构
- 批准号:
1813651 - 财政年份:2018
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
WORKSHOP: The Pioneers Workshop at the 2017 ACM/IEEE International Conference on Human-Robot Interaction
研讨会:2017 年 ACM/IEEE 人机交互国际会议先锋研讨会
- 批准号:
1724537 - 财政年份:2017
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
HCC: Small: Manipulating Perceptions of Robot Agency
HCC:小:操纵对机器人机构的看法
- 批准号:
1117801 - 财政年份:2011
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
SoCS: Modeling Agency and Intentions in Dynamic Environments as a Precursor to Efficient Human-Computer Interaction
SoCS:动态环境中的代理和意图建模作为高效人机交互的先驱
- 批准号:
0968538 - 财政年份:2010
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
CDI-Type I: Understanding Regulation of Visual Attention in Autism through Computational and Robotic Modeling
CDI-I 型:通过计算和机器人建模了解自闭症视觉注意力的调节
- 批准号:
0835767 - 财政年份:2008
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Quantative measures of social response for autism diagnosis
自闭症诊断社会反应的定量测量
- 批准号:
0534610 - 财政年份:2005
- 资助金额:
$ 402.5万 - 项目类别:
Continuing Grant
CAREER: Social Robots and Human Social Development
职业:社交机器人和人类社会发展
- 批准号:
0238334 - 财政年份:2003
- 资助金额:
$ 402.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
- 批准号:
2318696 - 财政年份:2023
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: Development of a precision closed loop BCI for socially fearful teens with depression and anxiety
合作研究:为患有抑郁症和焦虑症的社交恐惧青少年开发精确闭环脑机接口
- 批准号:
2327066 - 财政年份:2023
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: Development of a precision closed loop BCI for socially fearful teens with depression and anxiety
合作研究:为患有抑郁症和焦虑症的社交恐惧青少年开发精确闭环脑机接口
- 批准号:
2327065 - 财政年份:2023
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CPS: Socially Informed Traffic Signal Control for Improving Near Roadway Air Quality
合作研究:CISE-MSI:RCBP-RF:CPS:用于改善附近道路空气质量的社会知情交通信号控制
- 批准号:
2318697 - 财政年份:2023
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: BPC-A: Socially Responsible Computing: Promoting Latinx student retention via community engagement in early CS courses
合作研究:BPC-A:社会责任计算:通过社区参与早期计算机科学课程来提高拉丁裔学生的保留率
- 批准号:
2216575 - 财政年份:2022
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: BPC-A: Socially Responsible Computing: Promoting Latinx student retention via community engagement in early CS courses
合作研究:BPC-A:社会责任计算:通过社区参与早期计算机科学课程来提高拉丁裔学生的保留率
- 批准号:
2216694 - 财政年份:2022
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2149520 - 财政年份:2022
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: BPC-A: Socially Responsible Computing: Promoting Latinx student retention via community engagement in early CS courses
合作研究:BPC-A:社会责任计算:通过社区参与早期计算机科学课程来提高拉丁裔学生的保留率
- 批准号:
2216513 - 财政年份:2022
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2149511 - 财政年份:2022
- 资助金额:
$ 402.5万 - 项目类别:
Standard Grant