Spectral Theory and Dynamics of Ergodic Schrodinger Operators

遍历薛定谔算子的谱理论和动力学

基本信息

  • 批准号:
    1764154
  • 负责人:
  • 金额:
    $ 20.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The goal of this research project is to develop dynamical techniques for the spectral analysis of the ergodic Schroedinger operators, which arise in modeling the motion of quantum particles in certain disordered media. A large part of the theory of dynamical systems deals with long-term behaviors of typical trajectories in certain mathematical or physical systems, such as hyperbolic systems or Hamiltonian systems. A key task of spectral analysis of the ergodic Schroedinger operators is to study the asymptotic behaviors of the solutions of the associated eigenvalue equations. Bridges between two different areas can then be built since ``asymptotic behaviors of solutions'' may be interpreted as ``long-term behaviors of certain systems''. The goal of this project is to develop dynamical techniques that are driven by building such bridges and that may benefit both areas.Different disordered media lead to different type of ergodic base systems. The famous and intensively studied Anderson model corresponds to i.i.d. random variables which can be generated by full shift. Two types of base systems with which this project is concerned are quasi-periodic systems, typical almost periodic systems, and hyperbolic systems, classic type of strongly mixing systems. Various levels of randomness may be detected by a dynamical object, the Lyapunov exponent, which is the main object of study of this project. One focus of this project is the study of positivity and large deviation estimates of the Lyapunov exponent. These properties are super sensitive to the randomness of the base dynamics, are generally difficult to obtain, and are thus among central topics in dynamics systems. From the side of spectral theory, they are strong indications of the Anderson Localization phenomenon and imply immediately certain regularity of both the Lyapunov exponent and the integrated density of states. Deep investigation of the two properties for both quasi-periodic and hyperbolic base dynamics may shed light on how to obtain positive Lyapunov exponent of the standard map. This is one of the most notorious unsolved problems in dynamical systems where the difficulty lies exactly in the complicated coexistence of both elliptic and hyperbolic behaviors. Another fundamental relation between dynamical systems and spectral theory is the Cantor Spectrum phenomenon. The most famous physical example regarding this phenomenon is the Hofstadter's butterfly. In dynamical systems, Cantor spectrum phenomenon may be viewed as some kind of ubiquity of uniformly hyperbolic systems. Another focus of this project is then to investigate Cantor spectrum.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目的目标是开发用于各态历经薛定谔算子谱分析的动力学技术,该算子是在对某些无序介质中量子粒子的运动进行建模时产生的。动力系统理论的很大一部分涉及某些数学或物理系统中典型轨迹的长期行为,例如双曲系统或哈密顿系统。遍历Schroedinger算子谱分析的一个关键任务是研究其本征方程解的渐近性态。这样就可以在两个不同领域之间建立桥梁,因为“解的渐近行为”可以解释为"某些系统的长期行为“。这个项目的目标是发展动力学技术,通过建立这样的桥梁,可能有利于这两个领域。不同的无序介质导致不同类型的遍历基础系统。著名的和深入研究的安德森模型对应于i.i.d.。随机变量,可以由全移位产生。本课题研究的基系统有两类,一类是准周期系统,典型的概周期系统,另一类是双曲系统,典型的强混合系统。各种程度的随机性可以通过一个动态对象来检测,即李雅普诺夫指数,这是本项目的主要研究对象。该项目的一个重点是研究李雅普诺夫指数的正性和大偏差估计。这些属性对基本动力学的随机性非常敏感,通常很难获得,因此是动力学系统的中心主题。从谱理论的角度来看,它们是安德森局域化现象的强有力的指示,并直接暗示了李雅普诺夫指数和积分态密度的某种规律性。对拟周期和双曲基动力学的这两个性质的深入研究,可以为如何获得标准映射的正李雅普诺夫指数提供指导。这是动力系统中最臭名昭著的未解决问题之一,其困难恰恰在于椭圆和双曲行为的复杂共存。动力系统和谱理论之间的另一个基本关系是康托谱现象。关于这种现象最著名的物理例子是霍夫施塔特蝴蝶。在动力系统中,康托谱现象可以看作是一致双曲系统的普遍现象。 该项目的另一个重点是调查康托频谱。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrödinger operators
均匀双曲性及其与一维离散薛定谔算子谱分析的关系
  • DOI:
    10.4171/jst/333
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Zhang, Zhenghe
  • 通讯作者:
    Zhang, Zhenghe
Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent
  • DOI:
    10.1090/tran/7832
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Valmir Bucaj;D. Damanik;J. Fillman;Vitaly Gerbuz;Tom VandenBoom;Fengpeng Wang;Zhenghe Zhang
  • 通讯作者:
    Valmir Bucaj;D. Damanik;J. Fillman;Vitaly Gerbuz;Tom VandenBoom;Fengpeng Wang;Zhenghe Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenghe Zhang其他文献

Equivalent wavelength self-mixing interference vibration measurements based on envelope extraction Fourier transform algorithm
  • DOI:
    https://doi.org/10.1364/AO.56.008584
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
  • 作者:
    Dongyu Li;Zan Huang;Wenhao Mo;Yan Ling;Zhenghe Zhang;Zhen Huang
  • 通讯作者:
    Zhen Huang
Wasted to electrodes in seconds: Ultrafast‑carbonization of coffee powders for high performance zinc-ion hybrid supercapacitors
  • DOI:
    10.1016/j.susmat.2024.e01212
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zhongqi Wei;Zhenghe Zhang;Di Tang;Yuankong Wei;Zhijun Zhang;Xining Zang
  • 通讯作者:
    Xining Zang
On Motivic Realizations of the Canonical Hermitian Variations of Hodge Structure of Calabi–Yau Type over type $D^{mathbb{H}}$ Domains
关于 Calabi-Yau 型 Hodge 结构在 $D^{mathbb{H}}$ 域上的正则埃尔米特变体的动机实现
Cantor spectrum for a class of $C^2$ quasiperiodic Schr?dinger operators
一类$C^2$准周期薛定格算子的康托谱
One pot synthesis of thick shell blue emitting CdZnS/ZnS quantum dots with narrow emission line width
一锅合成窄发射线宽厚壳蓝光CdZnS/ZnS量子点
  • DOI:
    10.1364/ome.389823
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Bing Xu;Tingting Zhang;Xinru Lin;Huimin Yang;Xiao Jin;Zhen Huang;Zhenghe Zhang;Dongyu Li;Qinghua Li
  • 通讯作者:
    Qinghua Li

Zhenghe Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spectral Theory and Quantum Dynamics
谱理论和量子动力学
  • 批准号:
    2054752
  • 财政年份:
    2021
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1764384
  • 财政年份:
    2018
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Global Dynamics of Nonlinear Dispersive Evolution Equations and Spectral Theory
非线性色散演化方程的全局动力学和谱理论
  • 批准号:
    1902691
  • 财政年份:
    2018
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Spectral theory and dynamics on hyperbolic manifolds
双曲流形的谱理论和动力学
  • 批准号:
    1401747
  • 财政年份:
    2014
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
GRK 1838: Spectral Theory and Dynamics of Quantum Systems
GRK 1838:光谱理论和量子系统动力学
  • 批准号:
    206649329
  • 财政年份:
    2013
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Research Training Groups
Differential Operators of Mathematical Physics: Spectral Theory and Dynamics (C07 [B1,B6])
数学物理微分算子:谱理论与动力学(C07 [B1,B6])
  • 批准号:
    230908068
  • 财政年份:
    2013
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Collaborative Research Centres
Dynamics, Spectral Theory and Arithmetic in Quantum Chaos
量子混沌中的动力学、谱论和算术
  • 批准号:
    1101596
  • 财政年份:
    2011
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Quantitative characteristics of the hyperbolic sets arising in conservative dynamics, celestial mechanics, and spectral theory
保守动力学、天体力学和谱理论中出现的双曲集的定量特征
  • 批准号:
    0901627
  • 财政年份:
    2009
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Dynamics of Schroedinger Cocycles and Applications to Spectral Theory
薛定谔余循环动力学及其在谱理论中的应用
  • 批准号:
    0800100
  • 财政年份:
    2008
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
Aperiodic order: spectral theory, combinatorics, and dynamics
非周期序:谱理论、组合学和动力学
  • 批准号:
    0010101
  • 财政年份:
    2001
  • 资助金额:
    $ 20.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了