Extremal and Probabilistic questions on hypergraphs
超图的极值和概率问题
基本信息
- 批准号:0969092
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will develop the theory of hypergraphs, or families of sets, focusing on extremal and probabilistic questions. A goal is to extend classical theorems in the area and to discover new phenomena using modern approaches, which include the semirandom or nibble method and hypergraph regularity. The PI and his collaborators have recently used these tools to improve and extend several results in combinatorics that have been around for decades. The plan is to continue these projects. Several questions that were unapproachable for many years have suddenly come within reach due to some ground-breaking recent developments and the PI plans to continue exploiting these new techniques to shed light on old problems. The specific questions to be attacked concern the chromatic number of locally sparse hypergraphs, the structure of typical hypergraphs that contains no copy of some fixed configuration, and the enumeration of copies of one hypergraph in another.The extremal theory of hypergraphs impacts several areas of Mathematics and also has consequences in other fields like information theory, coding theory, and theoretical computer science. The study of random structures and randomized algorithms has gained importance in recent years due to the proliferation of large networks like the internet and various other social networks. Developing new techniques to study these complex systems will be a major task for future researchers. Part of this project seeks to develop randomized algorithms that break a large complicated system into smaller, well understood pieces.
PI将发展超图理论,或集族,专注于极值和概率问题。目标是扩展该领域的经典定理,并使用现代方法发现新现象,其中包括半随机或蚕食方法和超图正则性。PI和他的合作者最近使用这些工具来改进和扩展已经存在了几十年的组合学的几个结果。计划是继续这些项目。由于最近一些突破性的发展,多年来无法解决的一些问题突然变得触手可及,PI计划继续利用这些新技术来解决老问题。要解决的具体问题涉及局部稀疏超图的色数、典型超图的结构(不包含某些固定构型的副本)以及一个超图在另一个超图中的副本枚举。超图的极值理论影响了数学的几个领域,也影响了其他领域,如信息论、编码理论和理论计算机科学。近年来,由于互联网等大型网络和各种其他社交网络的激增,随机结构和随机算法的研究变得越来越重要。开发研究这些复杂系统的新技术将是未来研究人员的主要任务。这个项目的一部分旨在开发随机算法,将一个庞大的复杂系统分解成更小、更容易理解的部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dhruv Mubayi其他文献
Counting substructures II: Hypergraphs
- DOI:
10.1007/s00493-013-2638-2 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:1.000
- 作者:
Dhruv Mubayi - 通讯作者:
Dhruv Mubayi
On the VC-dimension of uniform hypergraphs
- DOI:
10.1007/s10801-006-0025-4 - 发表时间:
2006-07-11 - 期刊:
- 影响因子:0.900
- 作者:
Dhruv Mubayi;Yi Zhao - 通讯作者:
Yi Zhao
Quadruple systems with independent neighborhoods
- DOI:
10.1016/j.jcta.2008.01.008 - 发表时间:
2008-11-01 - 期刊:
- 影响因子:
- 作者:
Zoltan Füredi;Dhruv Mubayi;Oleg Pikhurko - 通讯作者:
Oleg Pikhurko
NOTE New Upper Bounds for a Canonical Ramsey Problem
- DOI:
10.1007/s004930070037 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Tao Jiang;Dhruv Mubayi - 通讯作者:
Dhruv Mubayi
Sparse hypergraphs with low independence number
- DOI:
10.1007/s00493-014-3219-8 - 发表时间:
2015-11-28 - 期刊:
- 影响因子:1.000
- 作者:
Jeff Cooper;Dhruv Mubayi - 通讯作者:
Dhruv Mubayi
Dhruv Mubayi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dhruv Mubayi', 18)}}的其他基金
FRG: Collaborative Research: Pseudorandomness in Ramsey Theory
FRG:协作研究:拉姆齐理论中的伪随机性
- 批准号:
1952767 - 财政年份:2020
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Extremal and Probabilistic Questions on Hypergraphs
超图的极值和概率问题
- 批准号:
1300138 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Ramsey Theory, Hypergraph Coloring, and Structural Problems in Graph Theory
拉姆齐理论、超图着色和图论中的结构问题
- 批准号:
0233777 - 财政年份:2002
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Ramsey Theory, Hypergraph Coloring, and Structural Problems in Graph Theory
拉姆齐理论、超图着色和图论中的结构问题
- 批准号:
9970325 - 财政年份:1999
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
New approaches to training deep probabilistic models
训练深度概率模型的新方法
- 批准号:
2613115 - 财政年份:2025
- 资助金额:
$ 20万 - 项目类别:
Studentship
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
- 批准号:
EP/Y000862/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
ProbAI: A Hub for the Mathematical and Computational Foundations of Probabilistic AI
ProbAI:概率人工智能的数学和计算基础中心
- 批准号:
EP/Y028783/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
- 批准号:
2907694 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Studentship
Understanding conscious and unconscious learning of probabilistic information
理解概率信息的有意识和无意识学习
- 批准号:
24K16877 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
- 批准号:
24K07723 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
- 批准号:
22KJ2747 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Statistical and Probabilistic Reasoning を重視した授業と教師用教材の開発研究
研究和开发以统计和概率推理为重点的课程和教材
- 批准号:
23K02801 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Strategic decision-making under non-probabilistic uncertainty
非概率不确定性下的战略决策
- 批准号:
2890417 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Studentship
Probabilistic Agent-Based Modelling for Predicting School Attendance
用于预测入学率的基于概率代理的建模
- 批准号:
2887257 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Studentship