Extremal and Probabilistic Questions on Hypergraphs

超图的极值和概率问题

基本信息

  • 批准号:
    1300138
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

The PI will develop the theory of hypergraphs, or families of sets, focusing on extremal and probabilistic questions. Three directions of study are proposed: quasirandomness, extremal Turan-type problems, and ramsey theory. In each of these areas, the PI will extend classical results in graph theory that have been around for decades to hypergraphs. For example, extending the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs to hypergraphs has received considerable attention since the early 1990's and the PI has made further progress recently; he plans to explore the sparse case in this project. The PI (together with coauthors) has recently extended the Erdos-Gallai theorem about paths and cycles in graphs to hypergraphs; further extensions of the new method that was developed will be explored for other forbidden structures. Finally, there have been relatively few results in hypergraph Ramsey theory since some basic bounds of Erdos and others from the 1950's and the PI will use modern approaches to tackle some outstanding problems in these areas. The extremal and probabilistic theory of hypergraphs impacts several areas of Mathematics (number theory, combinatorics, logic) as well as other fields like information theory, coding theory, and theoretical computer science. The study of random structures and randomized algorithms has gained particular importance in recent years due to the many large real world networks that have emerged and are being studied. Developing new techniques to study these complex systems will be a major task for future researchers. The theory of quasirandom hypergraphs may form a theoretical foundation for studying large scale behavior of more complicated networks where groups of more than two nodes are connected to each other. One theme common to most problems that will be investigated in this project is to understand the quantitative relationship between the local and global behavior of a large system.
PI将发展超图或集合族的理论,专注于极值和概率问题。提出了三个研究方向:准随机性,极值图兰型问题,拉姆齐理论。 在这些领域中的每一个领域,PI将把图论中已经存在了几十年的经典结果扩展到超图。例如,从20世纪90年代初起,将Mesquason和Chung-Graham-Wilson关于拟随机图的基础结果扩展到超图已经受到了相当大的关注,PI最近取得了进一步的进展;他计划在这个项目中探索稀疏情况。PI(与合著者一起)最近将关于图中的路径和循环的Erdos-Gallai定理扩展到超图;将进一步扩展开发的新方法用于其他禁止结构。 最后,超图Ramsey理论的结果相对较少,因为Erdos和其他人的一些基本界限来自20世纪50年代,PI将使用现代方法来解决这些领域中的一些突出问题。超图的极值和概率理论影响了数学的几个领域(数论,组合学,逻辑)以及其他领域,如信息论,编码理论和理论计算机科学。近年来,由于出现了许多大型真实的世界网络并正在进行研究,因此对随机结构和随机算法的研究变得尤为重要。开发新的技术来研究这些复杂系统将是未来研究人员的主要任务。拟随机超图的理论可以为研究两个以上节点相连的复杂网络的大规模行为提供理论基础。 在这个项目中,大多数问题的一个共同主题是理解一个大系统的局部和全局行为之间的定量关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dhruv Mubayi其他文献

Counting substructures II: Hypergraphs
  • DOI:
    10.1007/s00493-013-2638-2
  • 发表时间:
    2013-10-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Dhruv Mubayi
  • 通讯作者:
    Dhruv Mubayi
On the VC-dimension of uniform hypergraphs
  • DOI:
    10.1007/s10801-006-0025-4
  • 发表时间:
    2006-07-11
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Dhruv Mubayi;Yi Zhao
  • 通讯作者:
    Yi Zhao
Quadruple systems with independent neighborhoods
  • DOI:
    10.1016/j.jcta.2008.01.008
  • 发表时间:
    2008-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zoltan Füredi;Dhruv Mubayi;Oleg Pikhurko
  • 通讯作者:
    Oleg Pikhurko
NOTE New Upper Bounds for a Canonical Ramsey Problem
  • DOI:
    10.1007/s004930070037
  • 发表时间:
    2000-01-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Tao Jiang;Dhruv Mubayi
  • 通讯作者:
    Dhruv Mubayi
The DNF exception problem
  • DOI:
    10.1016/j.tcs.2005.10.038
  • 发表时间:
    2006-03-07
  • 期刊:
  • 影响因子:
  • 作者:
    Dhruv Mubayi;György Turán;Yi Zhao
  • 通讯作者:
    Yi Zhao

Dhruv Mubayi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dhruv Mubayi', 18)}}的其他基金

Hypergraphs and Ramsey Theory
超图和拉姆齐理论
  • 批准号:
    2153576
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Pseudorandomness in Ramsey Theory
FRG:协作研究:拉姆齐理论中的伪随机性
  • 批准号:
    1952767
  • 财政年份:
    2020
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Extremal Questions for Hypergraphs
超图的极值问题
  • 批准号:
    1763317
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Extremal and Probabilistic questions on hypergraphs
超图的极值和概率问题
  • 批准号:
    0969092
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Problems in Extremal Set Theory
极值集合论中的问题
  • 批准号:
    0653946
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Extremal Combinatorics
极值组合学
  • 批准号:
    0400812
  • 财政年份:
    2004
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Ramsey Theory, Hypergraph Coloring, and Structural Problems in Graph Theory
拉姆齐理论、超图着色和图论中的结构问题
  • 批准号:
    0233777
  • 财政年份:
    2002
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Ramsey Theory, Hypergraph Coloring, and Structural Problems in Graph Theory
拉姆齐理论、超图着色和图论中的结构问题
  • 批准号:
    9970325
  • 财政年份:
    1999
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似海外基金

New approaches to training deep probabilistic models
训练深度概率模型的新方法
  • 批准号:
    2613115
  • 财政年份:
    2025
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
Probabilistic Inference Based Utility Evaluation and Path Generation for Active Autonomous Exploration of USVs in Unknown Confined Marine Environments
基于概率推理的效用评估和路径生成,用于未知受限海洋环境中 USV 主动自主探索
  • 批准号:
    EP/Y000862/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
ProbAI: A Hub for the Mathematical and Computational Foundations of Probabilistic AI
ProbAI:概率人工智能的数学和计算基础中心
  • 批准号:
    EP/Y028783/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Research Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Studentship
Understanding conscious and unconscious learning of probabilistic information
理解概率信息的有意识和无意识学习
  • 批准号:
    24K16877
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
  • 批准号:
    24K07723
  • 财政年份:
    2024
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
CAREER: Set-Systems: Probabilistic, Geometric and Extremal Perspectives
职业:集合系统:概率、几何和极值观点
  • 批准号:
    2237138
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
RAPID/Collaborative Research: Advancing Probabilistic Fault Displacement Hazard Assessments by Collecting Perishable Data from the 2023 Turkiye Earthquake Sequence
RAPID/合作研究:通过收集 2023 年土耳其地震序列的易腐烂数据推进概率断层位移危险评估
  • 批准号:
    2330152
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Probabilistic models of zeta-functions and applications to number theory
Zeta 函数的概率模型及其在数论中的应用
  • 批准号:
    22KJ2747
  • 财政年份:
    2023
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了