Modular representations of finite groups

有限群的模表示

基本信息

  • 批准号:
    1001102
  • 负责人:
  • 金额:
    $ 10.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

The project is an investigation into the representation theory and cohomology of finite groups and algebras over fields of prime characteristic. The Principal Investigator is particularly interested in the homological properties of representations which underlie the basic module theory. In the area of group representations he will continue his long investigation into the connections between module theory and group cohomology. Specific problems are concerned with the classification of endotrivial modules which define the stable equivalences of Morita type for the group algebra. The Principal Investigator will study other basic issues concerned with the linear algebra of representations of finite groups and group schemes and connections with the theory of bundles. The proposed work will build on the foundation laid by the Principal investigator over many years. In addition, he plans to continue his development of computer algebra systems for experimentation with modules and homomorphisms. Recent work has led to the development of systems for analyzing and condensing matrix algebras down to their basic algebras. The system will be expanded to investigate general homological properties for finite dimensional algebras as well as application to group representations. Other projects involve connections with the representation theory of algebraic groups and the general theory of group extensions.The Principal Investigator will look at algebraic systems together with the actions of operators. Such a system might be a space with the operators being rotations or some representation of progression over time. The system is called a module and it might have many dimensions in the sense of depending on many variable. The project will concentrate on the classification of collections of certain types of modules whose associated operators whose interactions satisfy preset conditions. A significant part of the project is the development of computational techniques and software for analyzing the structure and properties of modules. Groups of transformations on modules and spaces are basic objects in modern mathematics and arise in many applications of the mathematics.
本课题是研究有限群和代数在素数特征域上的表示理论和上同调。首席研究员对构成基本模块理论基础的表征的同调性质特别感兴趣。在群表示方面,他将继续对模论与群上同的关系进行长期的研究。具体问题涉及定义群代数的Morita型稳定等价的内平凡模的分类。首席研究员将研究与有限群表示的线性代数和群方案以及与束理论的联系有关的其他基本问题。拟议的工作将建立在首席研究员多年来奠定的基础上。此外,他计划继续开发计算机代数系统,用于模块和同态的实验。最近的工作导致了分析和压缩矩阵代数到其基本代数的系统的发展。该系统将扩展到研究有限维代数的一般同调性质以及对群表示的应用。其他项目涉及与代数群的表示理论和群扩展的一般理论的联系。首席研究员将研究代数系统和算子的动作。这样的系统可能是一个空间,其中的运算符是旋转或一些随时间进展的表示。系统被称为一个模块,它可能有很多维度,因为它依赖于很多变量。该项目将集中于对某些类型模块的集合进行分类,这些模块的相关操作符的交互满足预设条件。该项目的一个重要部分是开发用于分析模块结构和性能的计算技术和软件。模和空间上的变换群是现代数学中的基本对象,在数学的许多应用中都有出现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jon Carlson其他文献

Using the Imago Dialogue to Deepen Couples Therapy
利用意象对话深化夫妻治疗
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Hendrix;H. Hunt;Wade Luquet;Jon Carlson
  • 通讯作者:
    Jon Carlson

Jon Carlson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jon Carlson', 18)}}的其他基金

Modular Representations of Finite Groups
有限群的模表示
  • 批准号:
    0654173
  • 财政年份:
    2007
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Modular Representations of Finite Groups
有限群的模表示
  • 批准号:
    0401431
  • 财政年份:
    2004
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Modular Representations of Finite Groups
有限群的模表示
  • 批准号:
    0100662
  • 财政年份:
    2001
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Modular Representations of Finite Groups
有限群的模表示
  • 批准号:
    9870035
  • 财政年份:
    1998
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Modular Representations of Finite Groups
数学科学:有限群的模表示
  • 批准号:
    9301929
  • 财政年份:
    1993
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Modular Representations of Finite Groups
数学科学:有限群的模表示
  • 批准号:
    9001689
  • 财政年份:
    1990
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Cohomology and Representation Theory of Finite and Algebraic Groups
数学科学:有限代数群的上同调和表示论会议
  • 批准号:
    8713252
  • 财政年份:
    1987
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Modular Representation of Finite Groups
数学科学:有限群的模表示
  • 批准号:
    8701681
  • 财政年份:
    1987
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Continuing Grant
Scientific Visit to Study Integral Representations of FiniteGroups
研究有限群积分表示的科学访问
  • 批准号:
    8617563
  • 财政年份:
    1987
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representations of Groups and Algebras
数学科学:群和代数的表示
  • 批准号:
    8503309
  • 财政年份:
    1985
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant

相似海外基金

Algorithmic and experimental aspects of modular Galois representations over finite fields and modulo prime powers
有限域和模素数幂上的模伽罗瓦表示的算法和实验方面
  • 批准号:
    171737983
  • 财政年份:
    2010
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Priority Programmes
Modular representations and cohomology for algebraic, finite and quantum groups
代数群、有限群和量子群的模表示和上同调
  • 批准号:
    1001900
  • 财政年份:
    2010
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Modular Representations of Finite Groups
有限群的模表示
  • 批准号:
    0654173
  • 财政年份:
    2007
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Modular and integral representations of finite groups and algebras
有限群和代数的模和积分表示
  • 批准号:
    19540044
  • 财政年份:
    2007
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modular Representations of Finite Groups
有限群的模表示
  • 批准号:
    0401431
  • 财政年份:
    2004
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Modular forms and Galois representations in finite characteristic
有限特征中的模形式和伽罗瓦表示
  • 批准号:
    0355528
  • 财政年份:
    2004
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Modular Representations of Finite Groups
有限群的模表示
  • 批准号:
    0100662
  • 财政年份:
    2001
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
Modular Representations of Finite Groups, Codes and Projective Geometry Over Finite Fields
有限域上有限群、代码和射影几何的模表示
  • 批准号:
    0071060
  • 财政年份:
    2000
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Standard Grant
RESEARCH ON THE MODULAR REPRESENTATIONS OF FINITE GROUPS
有限群模表示的研究
  • 批准号:
    11640042
  • 财政年份:
    1999
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modular Representations of Finite Groups
有限群的模表示
  • 批准号:
    9870035
  • 财政年份:
    1998
  • 资助金额:
    $ 10.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了