Rigidity of Abelian Actions

阿贝尔行为的刚性

基本信息

  • 批准号:
    1004908
  • 负责人:
  • 金额:
    $ 7.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-20 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

The proposed research is in the area of smooth dynamics and ergodic theory. The main focus of the proposed research is the study of dynamical systems with multidimensional time. Intensive research during the past two decades proved that wide variety of such systems which display certain degree of chaotic behavior, are remarkably rigid. These results induced fast progress towards some long standing conjectures in number theory and quantum mechanics. Rigidity of such systems stands in sharp contrast with flexibility of chaotic systems with one-dimensional time. There are two main themes within the proposed research. The first is to explore further stability and rigidity of algebraic multidimensional-time systems with less chaotic behavior: existence and local rigidity (i.e. differentiable stability) of partially hyperbolic abelian actions on nilmanifolds, and local rigidity of parabolic abelian actions on certain classes of locally symmetric spaces. In this direction the proposed research involves the KAM theory approach and thus requires a detailed study of the corresponding infinitesimal problem: the description of the first cohomology over these actions. The second theme is to explore the existence and stability properties of non-algebraic systems which are strongly partially hyperbolic. Such systems have specific structure of invariant foliations which on one hand imposes restrictions for the manifold of the action, and on the other hand it tends to be robust under small perturbations thus leading to certain degree of stability for the action. The research in this direction leads towards global classification of strongly partially hyperbolic multidimensional-time systems.Dynamical systems and chaos are the areas of mathematics which have flourished during past years while maintaining a strong connection with their roots which lie in the study of various phenomena in domains like cell biology, nano technology, meteorology and engineering. The studies of evolution of nature systems in time represent one of the core scientific interests today. The problem of stability of systems is one of the main issues which arises in the study of nature systems as mathematical models are merely approximations of the natural phenomena. In celestial mechanics, stability of the solar system is one important topic, and the KAM theory turned out to be a powerful tool towards better understanding of the system's long term behavior. Systems with multi-dimensional time appear in quantum mechanics, where rigidity of such systems is present in the form of uniform distribution of quantum states. Multidimensional-(lattice) time systems also appear in the mathematical formalism for quasicrystals, whose physical properties and generation have been intensively studied. In hardware architecture one of the recently explored venues is extending the classical methodology to multidimensional time (multidimensional scheduling). The principal investigator will continue to encourage undergraduate students, female in particular, to take active part in the research process and will make an effort to expose them to various aspects and applications of this research. These activities will benefit from the grant.
拟议的研究属于平滑动力学和遍历理论领域。 该研究的主要重点是多维时间动力系统的研究。过去二十年的深入研究证明,表现出一定程度混沌行为的各种此类系统都非常僵化。这些结果促使数论和量子力学中一些长期存在的猜想取得了快速进展。 这种系统的刚性与一维时间混沌系统的灵活性形成鲜明对比。拟议的研究有两个主题。第一个是进一步探索具有较少混沌行为的代数多维时间系统的稳定性和刚性:尼尔流形上部分双曲阿贝尔作用的存在性和局部刚性(即可微稳定性),以及某些类局部对称空间上抛物线阿贝尔作用的局部刚性。在这个方向上,所提出的研究涉及 KAM 理论方法,因此需要详细研究相应的无穷小问题:这些行为的第一上同调的描述。 第二个主题是探索强部分双曲非代数系统的存在性和稳定性。 这种系统具有特定的不变叶状结构,一方面对动作的多样性施加限制,另一方面它在小扰动下往往具有鲁棒性,从而导致动作的一定程度的稳定性。这个方向的研究导致了强部分双曲多维时间系统的全局分类。动力系统和混沌是过去几年蓬勃发展的数学领域,同时与其根源在于细胞生物学、纳米技术、气象学和工程学等领域的各种现象的研究保持着紧密的联系。对自然系统随时间演化的研究代表了当今的核心科学兴趣之一。系统稳定性问题是自然系统研究中出现的主要问题之一,因为数学模型仅仅是自然现象的近似。在天体力学中,太阳系的稳定性是一个重要的话题,KAM 理论被证明是一个强大的工具,可以帮助我们更好地理解系统的长期行为。多维时间系统出现在量子力学中,这种系统的刚性以量子态均匀分布的形式存在。多维(晶格)时间系统也出现在准晶体的数学形式中,其物理性质和生成已得到深入研究。在硬件架构中,最近探索的领域之一是将经典方法扩展到多维时间(多维调度)。首席研究员将继续鼓励本科生,特别是女生,积极参与研究过程,并努力让他们接触到这项研究的各个方面和应用。这些活动将受益于赠款。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danijela Damjanovic其他文献

Danijela Damjanovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Danijela Damjanovic', 18)}}的其他基金

CAREER: Smooth Group Actions - Persistence and Prevalence of Chaotic Behavior
职业生涯:顺利的群体行动——混乱行为的持续存在和普遍存在
  • 批准号:
    1150210
  • 财政年份:
    2012
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Continuing Grant
Perturbations of smooth group actions and cohomology
光滑群作用和上同调的扰动
  • 批准号:
    1001884
  • 财政年份:
    2010
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
Rigidity of Abelian Actions
阿贝尔行为的刚性
  • 批准号:
    0758555
  • 财政年份:
    2008
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant

相似国自然基金

一类特殊Abelian群的子群计数问题
  • 批准号:
    12301006
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Abelian沙堆模型的随机变体
  • 批准号:
    12101505
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超导量子电路阵列中的人工Non-Abelian规范场及相关光子拓扑物理
  • 批准号:
    11774114
  • 批准年份:
    2017
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-Abelian Hodge Theory and Transcendence
非阿贝尔霍奇理论与超越
  • 批准号:
    2401383
  • 财政年份:
    2024
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
  • 批准号:
    2889914
  • 财政年份:
    2023
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Studentship
CAREER: Novel platforms for topology and non-Fermi liquids: From projected topological branes to non-Abelian and fractional materials
职业:拓扑和非费米液体的新颖平台:从投影拓扑膜到非阿贝尔和分数材料
  • 批准号:
    2238679
  • 财政年份:
    2023
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Continuing Grant
The Frobenius action on curves and abelian varieties
曲线和阿贝尔簇上的弗罗贝尼乌斯作用
  • 批准号:
    2302511
  • 财政年份:
    2023
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
Harmonic Maps, Geometric Rigidity, and Non-Abelian Hodge Theory
调和映射、几何刚性和非阿贝尔霍奇理论
  • 批准号:
    2304697
  • 财政年份:
    2023
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
Abelian Varieties, Hecke Orbits, and Specialization
阿贝尔簇、赫克轨道和特化
  • 批准号:
    2337467
  • 财政年份:
    2023
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
Shimura Varieties and Abelian Varieties
志村品种和阿贝尔品种
  • 批准号:
    2200449
  • 财政年份:
    2022
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Continuing Grant
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
  • 批准号:
    2201124
  • 财政年份:
    2022
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
Dynamics on Calabi--Yau and abelian varieties
卡拉比动态--丘和阿贝尔变种
  • 批准号:
    EP/W026554/1
  • 财政年份:
    2022
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Research Grant
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
  • 批准号:
    2231958
  • 财政年份:
    2022
  • 资助金额:
    $ 7.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了