Shimura Varieties and Abelian Varieties
志村品种和阿贝尔品种
基本信息
- 批准号:2200449
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The award supports the principal investigator's research in arithmetic geometry, a branch of mathematics that studies integer solutions of polynomial equations, also called “rational points.” Arithmetic geometry has played a central role in solving many outstanding problems in number theory, such as Fermat's Last Theorem and the Mordell conjecture concerning the number of rational points on a curve. The main objects of study in this research project are called "Abelian varieties" and "Shimura varieties,” the study of which is at the interface of algebraic geometry, number theory, and representation theory and has broad applications to a number of long-standing conjectures. The project provides training opportunities for graduate students. This project concerns problems in and applications of the arithmetic of Abelian varieties and Shimura varieties, the latter being generalizations of the moduli space of abelian varieties. The first goal of the project is to show a new kind of Northcott property for the isogeny class of an abelian variety over a number field. Namely that, up to isomorphism, there are only finitely many abelian varieties of bounded height in the isogeny class. The second goal of the project is to study the structure of the cohomology of Shimura varieties, and the structure of their mod p points. Specifically, there is a conjecture, proved by the principal investigator in some cases, that the isogeny class of every mod p contains the reduction of a special point. These results can be used to give a spectral interpretation of the Hasse-Weil zeta function of a Shimura variety, following a program of Langlands.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持首席研究员在算术几何方面的研究,算术几何是数学的一个分支,研究多项式方程的整数解,也称为“有理点”。算术几何在解决数论中的许多突出问题中发挥了核心作用,例如费马大定理和关于曲线上有理点的数量的莫德尔猜想。本研究项目的主要研究对象被称为“阿贝尔簇”和“志村簇”,其研究处于代数几何、数论和表示论的界面,并在许多长期存在的结构中具有广泛的应用。该项目为研究生提供培训机会。本计画系关于阿贝尔簇与志村簇算术之问题与应用,志村簇是阿贝尔簇之模空间之推广。该项目的第一个目标是显示一种新的Northcott性质的同构类的阿贝尔品种在数域上。也就是说,直到同构,在同构类中只有100多个有界高度的阿贝尔簇。本项目的第二个目标是研究Shimura簇的上同调结构,以及它们模点的结构。具体来说,有一个猜想,证明了主要调查员在某些情况下,isobutch类的每一个模p包含减少一个特殊的点。这些结果可以用来给出一个光谱解释的Hasse-Weil zeta函数的志村品种,以下程序的Langlands.这个奖项反映了NSF的法定使命,并已被认为是值得支持的,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Kisin其他文献
Modular functions and resolvent problems
- DOI:
10.1007/s00208-022-02395-8 - 发表时间:
2022-04-02 - 期刊:
- 影响因子:1.400
- 作者:
Benson Farb;Mark Kisin;Jesse Wolfson - 通讯作者:
Jesse Wolfson
Mark Kisin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Kisin', 18)}}的其他基金
Geometric Langlands Correspondence: Further Directions
几何朗兰兹对应:进一步的方向
- 批准号:
2005475 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Number Theory and Its Interaction with Other Disciplines
数论及其与其他学科的相互作用
- 批准号:
1802365 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Shimura Varieties and Galois representations
志村簇和伽罗瓦表示
- 批准号:
1301921 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
p-adic Hodge Theory and Applications
p-进霍奇理论及其应用
- 批准号:
1001139 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Modularity and p-adic Langlands
模块化和p-adic Langlands
- 批准号:
0701123 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
The Fontaine-Mazur conjecture via p-adic modular forms
通过 p-adic 模形式的 Fontaine-Mazur 猜想
- 批准号:
0400666 - 财政年份:2004
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
正则半单Hessenberg varieties上的代数拓扑
- 批准号:11901218
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Frobenius action on curves and abelian varieties
曲线和阿贝尔簇上的弗罗贝尼乌斯作用
- 批准号:
2302511 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Abelian Varieties, Hecke Orbits, and Specialization
阿贝尔簇、赫克轨道和特化
- 批准号:
2337467 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
- 批准号:
2201124 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Irrationality of Periods and Arithmetic of Abelian Varieties
周期的无理性与阿贝尔簇的算术
- 批准号:
2231958 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Dynamics on Calabi--Yau and abelian varieties
卡拉比动态--丘和阿贝尔变种
- 批准号:
EP/W026554/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Degeneration of abelian varieties and compactification of moduli
阿贝尔簇的退化和模的紧化
- 批准号:
22K03261 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Links between commensurate and isogenous abelian varieties
等量阿贝尔变种和同源阿贝尔变种之间的联系
- 批准号:
553939-2020 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Post-quantum cryptography with isogeny graphs of abelian varieties
具有阿贝尔簇同源图的后量子密码学
- 批准号:
2571327 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Studentship
Abelian Varieties, Hecke Orbits, and Specialization
阿贝尔簇、赫克轨道和特化
- 批准号:
2100436 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant