Applications of Topology to Arithmetic and Algebraic Geometry

拓扑在算术和代数几何中的应用

基本信息

  • 批准号:
    1005675
  • 负责人:
  • 金额:
    $ 17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

This project is applying knowledge of the topology of moduli spaces of curves to problems in arithmetic and algebraic geometry. The three main foci of the project are to:(1) understand universal elliptic motives. These are motives (mixed Hodge structures, Galois representations, etc) associated to all elliptic curves. Elliptic motives are helping to explain, for example, why classical modular forms impose relations on special values of multiple zeta functions. They are also helping the PI to understand relations between extensions of Galois representations associated with elliptic curves and modular forms.(2) understand rational points of smooth projective curves over finitely generated infinite fields. This builds on earlier work of the principal investigator. He and his collaborators are extending it to fields of positive characteristic.(3) use knowledge of fundamental groups of certain moduli spaces (such as mapping class groups) to investigate fundamental questions in algebraic geometry. One such question being studied by the PI is whether every smooth projective curve is dominated by a smooth plane curve.Topology is the study of the shape of "topological spaces". The set of solutions of a set of algebraic equations forms a topological space.Its shape often exerts a lot of control over the set of solutions of the equations, especially when the solutions are required to be whole numbers, or ratios of whole numbers (known as "rational numbers"). The PI, with his collaborators and students, is using his knowledge of the shapes of some very special (and complicated) spaces, called moduli spaces, to help understand rational and integer solutions to some very general systems of algebraic equations. Algebraic curves and their rational points have long been studied by mathematicians. Their study, although esoteric, now plays an important role in modern cryptography.This project is jointly funded by the Topology Program and the Algebra and Number Theory Program.
这个项目是将曲线的模空间的拓扑知识应用于算术和代数几何中的问题。该项目的三个主要焦点是:(1)了解普遍的椭圆动机。这些都是与所有椭圆曲线相关的动机(混合Hodge结构、Galois表示等)。例如,椭圆动机有助于解释为什么经典的模形式将关系强加于多个Zeta函数的特定值。它们还有助于PI理解与椭圆曲线相关的Galois表示的扩张与模形式之间的关系。(2)理解有限生成的无限域上光滑射影曲线的有理点。这是建立在首席调查员早期工作的基础上的。他和他的合作者正在将其推广到具有正特征的领域。(3)利用某些模空间的基本群(如映射类群)的知识来研究代数几何中的基本问题。PI正在研究的一个问题是,是否每条光滑的射影曲线都由光滑的平面曲线所支配。拓扑学是研究“拓扑空间”的形状。一组代数方程的解的集合构成了一个拓扑空间,它的形状往往对方程的解的集合起着很大的控制作用,特别是当解必须是整数或整数的比率(称为有理数)时。PI和他的合作者和学生正在利用他对一些非常特殊(和复杂)空间的形状的知识,称为模空间,来帮助理解一些非常一般的代数方程组的有理和整数解。长期以来,数学家一直在研究代数曲线及其有理点。他们的研究虽然深奥,但现在在现代密码学中扮演着重要的角色。这个项目由拓扑学计划和代数与数论计划联合资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Hain其他文献

Predicting death in children
预测儿童死亡
Relative pro-<em>ℓ</em> completions of mapping class groups
  • DOI:
    10.1016/j.jalgebra.2009.02.014
  • 发表时间:
    2009-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Hain;Makoto Matsumoto
  • 通讯作者:
    Makoto Matsumoto
Relative Pro-l Completions of Mapping Class Groups
映射类组的相对 Pro-l 完成
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Hain;Makoto Matsumoto.
  • 通讯作者:
    Makoto Matsumoto.
公正なる世界観,ハイメインテナンス相互作用,制度への信頼が規範的判断に及ぼす影響
公平的世界观、高维护互动以及对机构的信任对规范判断的影响
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Hain;Makoto Matsumoto.;室橋春光;深草茉李・浦光博
  • 通讯作者:
    深草茉李・浦光博
End of life care for infants, children and young people (ENHANCE): Protocol for a mixed methods evaluation of current practice in the United Kingdom [version 1; peer review: awaiting peer review]
婴儿、儿童和青少年的临终关怀(ENHANCE):英国当前实践的混合方法评估协议[版本 1;
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Papworth;Julia Hackett;B. Beresford;F. Murtagh;H. Weatherly;Sebastian Hinde;Andre Bedendo;Gabriella Walker;Jane Noyes;S. Oddie;Chakrapani Vasudevan;R. Feltbower;Bob Phillips;Richard Hain;Gayathri Subramanian;Andrew Haynes;Lorna K Fraser
  • 通讯作者:
    Lorna K Fraser

Richard Hain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Hain', 18)}}的其他基金

Universal Teichmuller Motives
通用泰希米勒动机
  • 批准号:
    1406420
  • 财政年份:
    2014
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Topology and motives associated to moduli spaces of curves
与曲线模空间相关的拓扑和动机
  • 批准号:
    0706955
  • 财政年份:
    2007
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Hodge Theory, Galois Theory and the Topology of Moduli Spaces
霍奇理论、伽罗瓦理论和模空间拓扑
  • 批准号:
    0405440
  • 财政年份:
    2004
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
The Third DMJ/IMRN Conference
第三届DMJ/IMRN会议
  • 批准号:
    0413533
  • 财政年份:
    2004
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
The Topology, Geometry and Arithmetic of Moduli Spaces of Curves
曲线模空间的拓扑、几何与算术
  • 批准号:
    0103667
  • 财政年份:
    2001
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
The Second DMJ/IMRN Conference
第二届 DMJ/IMRN 会议
  • 批准号:
    0103989
  • 财政年份:
    2001
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Modular Forms and Topology
模块化形式和拓扑
  • 批准号:
    9870126
  • 财政年份:
    1998
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representations of Braid and Mapping Class Groups
数学科学:辫子和映射类群的表示
  • 批准号:
    9503069
  • 财政年份:
    1995
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Mapping Class Groups & Moduli Spaces of Algebraic Curves Conference; August 1991; Seattle, Washington
数学科学:映射类组
  • 批准号:
    9108213
  • 财政年份:
    1991
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Topology of Varieties
数学科学:簇拓扑
  • 批准号:
    8901608
  • 财政年份:
    1989
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Pioneering arithmetic topology around cyclotomic units and application to profinite rigidity
围绕分圆单元的开创性算术拓扑及其在有限刚度上的应用
  • 批准号:
    23K12969
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
  • 批准号:
    2231565
  • 财政年份:
    2023
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Workshop on Arithmetic and Topology Over Global Fields
全球域算术与拓扑研讨会
  • 批准号:
    2232776
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
CAREER: Stability Phenomena in Topology and Arithmetic Groups
职业:拓扑和算术群中的稳定性现象
  • 批准号:
    2142709
  • 财政年份:
    2022
  • 资助金额:
    $ 17万
  • 项目类别:
    Continuing Grant
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2021
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2020
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic and topology of moduli spaces
模空间的算术和拓扑
  • 批准号:
    RGPIN-2019-05264
  • 财政年份:
    2019
  • 资助金额:
    $ 17万
  • 项目类别:
    Discovery Grants Program - Individual
Representation Stability in Topology and Arithmetic Groups
拓扑和算术群中的表示稳定性
  • 批准号:
    1906123
  • 财政年份:
    2019
  • 资助金额:
    $ 17万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了