The Topology, Geometry and Arithmetic of Moduli Spaces of Curves

曲线模空间的拓扑、几何与算术

基本信息

  • 批准号:
    0103667
  • 负责人:
  • 金额:
    $ 10.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

DMS-0103667Richard M. HainThe goal of this project is to better understand the structure of mapping class groups and then to apply this knowledge to the problem of understanding motives over the spectrum of the integers. The Principal Investigator hopes to compute the stable highest weight decomposition of the graded quotients of the lower central series of the Torelli groups (tensored with the reals) as modules over the real symplectic group of rank g. This should be of interest to those studying 3-manifold invariants. The Principal Investigator plans to use his knowledge of thisstable decomposition to study the image of the Galois group of the rational numbers on appropriate completions of mapping class groups. In particular, he (in joint work with Makoto Matsumoto) hopes to be able to characterize the Zariski closure of the image of the Galois group in the group of outer automorphisms of the relative unipotent completion of mapping class groups of large genus. This should lead to improved understanding of the connections between Hodge Theory and Galois Theory; in particular, to improved understanding of the role of mixed zeta numbers in Galois theory.The Principal Investigator also plans to study the pseudoconvexity of the moduli spaces of curves. Looijenga has conjectured that there is a proper,non-negative, (g-2)-pseudoconvex real-valued function defined on the moduli space of genus g curves. Hain, in joint work with Looijenga, hopes to prove that the function that he constructed with David Reed several years ago is such a function. This result would lead to new vanishingresults for coherent cohomology of moduli spaces of curves as well as unified proofs of several results of Diaz and Harer on the topology of these moduli spaces.Topology is the study of those geometrical properties of surfaces and their generalizations that remain unchanged under stretching (short of tearing) and other continuous deformations. Geometry is the study of those properties of surfaces and their generalizations that preserve geometricproperties such as distances and/or angles. There is a profound connection between the topological symmetries of a surface(called the mapping class group of the surface), the geometry of all of the different ways of measuring angles on such a surface (the moduli space of conformal structures on the surface) and the arithmetical properties of the surface when viewed as the graph of a polynomial. Questions about mapping classgroups and moduli spaces of conformal structures on surfaces arise in many areas of mathematics (such as the study of numbers, and algebraic geometry), and have applications to particle physics through string theory and conformal field theory. There are also potential significant applications to cryptography. The goal of this proposal is to further explore and understand the intricate and deep connections between these topological, geometrical and arithmetical aspects of surface theory,especially those aspects with connections to number theory.
DMS-0103667 Richard M.这个项目的目标是更好地理解映射类组的结构,然后将这些知识应用于理解整数谱上的动机的问题。主要研究者希望计算Torelli群的较低中心序列的分次子的稳定最高权重分解(用实数张量)作为秩为g的真实的辛群上的模。这应该对那些研究3-流形不变量的人感兴趣。主要研究者计划利用他的知识,这种稳定的分解,研究图像的伽罗瓦集团的有理数适当完成的映射类组。特别是,他(在联合工作与诚松本)希望能够刻画Zeromki封闭的形象伽罗瓦群在组外自同构的相对幂单完成映射类群体的大属。这将有助于加深对霍奇理论和伽罗瓦理论之间联系的理解;特别是,有助于加深对伽罗瓦理论中混合zeta数的作用的理解。首席研究员还计划研究曲线模空间的伪凸性。Looijenga证明了在亏格g曲线的模空间上存在一个真的、非负的(g-2)-伪凸实值函数。海恩在与Looijenga的联合工作中,希望证明他与大卫里德几年前构建的函数就是这样一个函数。这一结果将导致曲线模空间的相干上同调的新的消失结果,以及迪亚兹和Harer关于这些模空间拓扑的几个结果的统一证明.拓扑是研究曲面的几何性质及其推广,这些性质在拉伸(除了撕裂)和其他连续变形下保持不变.几何学是研究曲面的性质及其保持几何性质(如距离和/或角度)的推广。在曲面的拓扑对称性(称为曲面的映射类群)、在曲面上测量角度的所有不同方法的几何学(曲面上的保形结构的模空间)以及曲面作为多项式图形时的算术性质之间存在着深刻的联系。关于曲面上共形结构的映射类群和模空间的问题出现在数学的许多领域(如数的研究和代数几何),并通过弦理论和共形场论应用于粒子物理学。密码学也有潜在的重要应用。这个提议的目的是进一步探索和理解曲面理论的这些拓扑、几何和算术方面之间的复杂和深刻的联系,特别是那些与数论有关的方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Hain其他文献

Predicting death in children
预测儿童死亡
Relative pro-<em>ℓ</em> completions of mapping class groups
  • DOI:
    10.1016/j.jalgebra.2009.02.014
  • 发表时间:
    2009-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Hain;Makoto Matsumoto
  • 通讯作者:
    Makoto Matsumoto
Relative Pro-l Completions of Mapping Class Groups
映射类组的相对 Pro-l 完成
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Hain;Makoto Matsumoto.
  • 通讯作者:
    Makoto Matsumoto.
公正なる世界観,ハイメインテナンス相互作用,制度への信頼が規範的判断に及ぼす影響
公平的世界观、高维护互动以及对机构的信任对规范判断的影响
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Hain;Makoto Matsumoto.;室橋春光;深草茉李・浦光博
  • 通讯作者:
    深草茉李・浦光博
End of life care for infants, children and young people (ENHANCE): Protocol for a mixed methods evaluation of current practice in the United Kingdom [version 1; peer review: awaiting peer review]
婴儿、儿童和青少年的临终关怀(ENHANCE):英国当前实践的混合方法评估协议[版本 1;
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Papworth;Julia Hackett;B. Beresford;F. Murtagh;H. Weatherly;Sebastian Hinde;Andre Bedendo;Gabriella Walker;Jane Noyes;S. Oddie;Chakrapani Vasudevan;R. Feltbower;Bob Phillips;Richard Hain;Gayathri Subramanian;Andrew Haynes;Lorna K Fraser
  • 通讯作者:
    Lorna K Fraser

Richard Hain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Hain', 18)}}的其他基金

Universal Teichmuller Motives
通用泰希米勒动机
  • 批准号:
    1406420
  • 财政年份:
    2014
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
Applications of Topology to Arithmetic and Algebraic Geometry
拓扑在算术和代数几何中的应用
  • 批准号:
    1005675
  • 财政年份:
    2010
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Topology and motives associated to moduli spaces of curves
与曲线模空间相关的拓扑和动机
  • 批准号:
    0706955
  • 财政年份:
    2007
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Hodge Theory, Galois Theory and the Topology of Moduli Spaces
霍奇理论、伽罗瓦理论和模空间拓扑
  • 批准号:
    0405440
  • 财政年份:
    2004
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
The Third DMJ/IMRN Conference
第三届DMJ/IMRN会议
  • 批准号:
    0413533
  • 财政年份:
    2004
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
The Second DMJ/IMRN Conference
第二届 DMJ/IMRN 会议
  • 批准号:
    0103989
  • 财政年份:
    2001
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Modular Forms and Topology
模块化形式和拓扑
  • 批准号:
    9870126
  • 财政年份:
    1998
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representations of Braid and Mapping Class Groups
数学科学:辫子和映射类群的表示
  • 批准号:
    9503069
  • 财政年份:
    1995
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Mapping Class Groups & Moduli Spaces of Algebraic Curves Conference; August 1991; Seattle, Washington
数学科学:映射类组
  • 批准号:
    9108213
  • 财政年份:
    1991
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Topology of Varieties
数学科学:簇拓扑
  • 批准号:
    8901608
  • 财政年份:
    1989
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Topology, Spectral Geometry, and Arithmetic of Locally Symmetric Spaces
职业:拓扑、谱几何和局部对称空间算术
  • 批准号:
    2338933
  • 财政年份:
    2024
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
Topology, Geometry and Arithmetic of Representation Varieties
表示簇的拓扑、几何和算术
  • 批准号:
    487339-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Postdoctoral Fellowships
Topology, Geometry and Arithmetic of Representation Varieties
表示簇的拓扑、几何和算术
  • 批准号:
    487339-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Postdoctoral Fellowships
CAREER: Moduli of curves via topology, geometry, and arithmetic
职业:通过拓扑、几何和算术计算曲线模
  • 批准号:
    1350075
  • 财政年份:
    2014
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
SM: Arithmetic Groups and Their Applications in Combinatorics, Geometry and Topology
SM:算术群及其在组合学、几何和拓扑中的应用
  • 批准号:
    1034750
  • 财政年份:
    2010
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Applications of Topology to Arithmetic and Algebraic Geometry
拓扑在算术和代数几何中的应用
  • 批准号:
    1005675
  • 财政年份:
    2010
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Topology, geometry and arithmetic of hyperbolic 3-manifolds
双曲3流形的拓扑、几何和算术
  • 批准号:
    0906155
  • 财政年份:
    2009
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Continuing Grant
New developments in number theory and geometry : arithmetic topology, categorical arithmetic geometry, algorithm
数论与几何新进展:算术拓扑、分类算术几何、算法
  • 批准号:
    19204002
  • 财政年份:
    2007
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Hyperbolic Manifolds: Geometry, Topology, Group Theory and Arithmetic
双曲流形:几何、拓扑、群论和算术
  • 批准号:
    0503753
  • 财政年份:
    2005
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Standard Grant
Beyond the framework of classical arithmetic geometry-Zeta, arithmetic topology, and categorical arithmetic geometry
超越经典算术几何的框架——Zeta、算术拓扑和分类算术几何
  • 批准号:
    16204002
  • 财政年份:
    2004
  • 资助金额:
    $ 10.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了