Topology and motives associated to moduli spaces of curves
与曲线模空间相关的拓扑和动机
基本信息
- 批准号:0706955
- 负责人:
- 金额:$ 27.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main focus of this project is Hodge and Galois structures on completions of mapping class groups and their relationship to mixed motives over moduli spaces of curves. One case of particular interest is in genus 1, where the PI is studying mixed motives associated to elliptic curves. With Makoto Matsumoto (Hiroshima University) the PI is studying the action of the absolute Galois group on the Malcev completion of the fundamental group of a once-punctured elliptic curve and also on the relative completion of the corresponding mapping class group. With Gregory Pearlstein (Michigan State) the PI is studying variations of mixed Hodge structure over moduli spaces of elliptic curves and their relationship to iterated integrals of modular forms recently defined by Yuri Manin. The Galois and Hodge structures are parallel and the PI expects each approach to illuminate the other. In other projects, the PI and his collaborators are developing general machinery needed to study the case of elliptic motives. On the Galois side, Matsumoto and the PI are proving basic results about Galois actions on completions of arithmetic mapping class groups. On the Hodge side, Pearlstein, Terasoma and the PI are developing fundamental mathematical tools for studying general classes of variations of mixed Hodge structure over complex algebraic varieties.Motives encode deep connections between the theory of whole numbers, integrals of certain algebraic functions and topology. Each of these theories has its own set of symmetries, and all are related through the theory of motives. The PI, together with his collaborators and students, are investigating the interactions of these symmetry groups that are associated to ``elliptic curves'', which are curves defined by cubic polynomials. Although this work is foundational, it has potential applications to cryptography and pseudo random number generation. Indeed, the PI's principal collaborator, Matsumoto (Hiroshima University), is an established expert in these subjects.
这个项目的主要焦点是Hodge和Galois结构在映射类群的补全上,以及它们在曲线模空间上与混合动机的关系。一个特别有趣的例子是属1,PI正在研究与椭圆曲线相关的混合动机。与Makoto Matsumoto(广岛大学)一起,PI正在研究绝对伽罗瓦群对一次穿孔椭圆曲线基本群的Malcev补全以及相应映射类群的相对补全的作用。与Gregory Pearlstein(密歇根州立大学)一起,PI正在研究椭圆曲线模空间上混合Hodge结构的变化及其与Yuri Manin最近定义的模形式的迭代积分的关系。伽罗瓦结构和霍奇结构是平行的,PI希望每种方法都能照亮另一种方法。在其他项目中,PI和他的合作者正在开发研究椭圆动机所需的通用机器。在伽罗瓦方面,Matsumoto和PI证明了伽罗瓦作用在算术映射类群补全上的基本结果。在Hodge方面,Pearlstein, Terasoma和PI正在开发基本的数学工具,用于研究复杂代数变量上混合Hodge结构的一般类型的变化。动机编码了整数理论、某些代数函数的积分和拓扑学之间的深层联系。每一种理论都有自己的一套对称性,而且都是通过动机理论联系起来的。PI与他的合作者和学生一起,正在研究这些与“椭圆曲线”相关的对称群的相互作用,椭圆曲线是由三次多项式定义的曲线。虽然这项工作是基础的,但它在密码学和伪随机数生成方面有潜在的应用。事实上,PI的主要合作者松本(广岛大学)是这些领域的知名专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Hain其他文献
Predicting death in children
预测儿童死亡
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:5.2
- 作者:
Lynda Brook;Richard Hain - 通讯作者:
Richard Hain
Relative pro-<em>ℓ</em> completions of mapping class groups
- DOI:
10.1016/j.jalgebra.2009.02.014 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:
- 作者:
Richard Hain;Makoto Matsumoto - 通讯作者:
Makoto Matsumoto
Relative Pro-l Completions of Mapping Class Groups
映射类组的相对 Pro-l 完成
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Richard Hain;Makoto Matsumoto. - 通讯作者:
Makoto Matsumoto.
公正なる世界観,ハイメインテナンス相互作用,制度への信頼が規範的判断に及ぼす影響
公平的世界观、高维护互动以及对机构的信任对规范判断的影响
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Richard Hain;Makoto Matsumoto.;室橋春光;深草茉李・浦光博 - 通讯作者:
深草茉李・浦光博
End of life care for infants, children and young people (ENHANCE): Protocol for a mixed methods evaluation of current practice in the United Kingdom [version 1; peer review: awaiting peer review]
婴儿、儿童和青少年的临终关怀(ENHANCE):英国当前实践的混合方法评估协议[版本 1;
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Andrew Papworth;Julia Hackett;B. Beresford;F. Murtagh;H. Weatherly;Sebastian Hinde;Andre Bedendo;Gabriella Walker;Jane Noyes;S. Oddie;Chakrapani Vasudevan;R. Feltbower;Bob Phillips;Richard Hain;Gayathri Subramanian;Andrew Haynes;Lorna K Fraser - 通讯作者:
Lorna K Fraser
Richard Hain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Hain', 18)}}的其他基金
Applications of Topology to Arithmetic and Algebraic Geometry
拓扑在算术和代数几何中的应用
- 批准号:
1005675 - 财政年份:2010
- 资助金额:
$ 27.61万 - 项目类别:
Standard Grant
Hodge Theory, Galois Theory and the Topology of Moduli Spaces
霍奇理论、伽罗瓦理论和模空间拓扑
- 批准号:
0405440 - 财政年份:2004
- 资助金额:
$ 27.61万 - 项目类别:
Standard Grant
The Topology, Geometry and Arithmetic of Moduli Spaces of Curves
曲线模空间的拓扑、几何与算术
- 批准号:
0103667 - 财政年份:2001
- 资助金额:
$ 27.61万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Braid and Mapping Class Groups
数学科学:辫子和映射类群的表示
- 批准号:
9503069 - 财政年份:1995
- 资助金额:
$ 27.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mapping Class Groups & Moduli Spaces of Algebraic Curves Conference; August 1991; Seattle, Washington
数学科学:映射类组
- 批准号:
9108213 - 财政年份:1991
- 资助金额:
$ 27.61万 - 项目类别:
Standard Grant
Mathematical Sciences: The Topology of Varieties
数学科学:簇拓扑
- 批准号:
8901608 - 财政年份:1989
- 资助金额:
$ 27.61万 - 项目类别:
Continuing Grant
相似海外基金
Understanding the motives and consequences of parents' educational investment : Competition, Parental Aversion, and Intergenerational mobility.
了解父母教育投资的动机和后果:竞争、父母厌恶和代际流动。
- 批准号:
24K16383 - 财政年份:2024
- 资助金额:
$ 27.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
$ 27.61万 - 项目类别:
Standard Grant
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
- 批准号:
23H01067 - 财政年份:2023
- 资助金额:
$ 27.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Children's Choice of Residence and Intra-Family Division of Bequests in Strategic Bequest Motives: Who Will Inherit the House and Take Care of the Parents?
战略性遗赠动机中子女的居住地选择与家庭内部遗赠分割:谁将继承房屋并照顾父母?
- 批准号:
23K01438 - 财政年份:2023
- 资助金额:
$ 27.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hitting Close to Home: A Multi-Method Investigation of Neighborhood Characteristics and Drinking Motives on Alcohol-Related Health Disparities
切中要害:对社区特征和饮酒动机对酒精相关健康差异的多方法调查
- 批准号:
10748631 - 财政年份:2023
- 资助金额:
$ 27.61万 - 项目类别:
Mellin motives, periods and high energy physics
梅林的动机、周期和高能物理学
- 批准号:
EP/W020793/1 - 财政年份:2022
- 资助金额:
$ 27.61万 - 项目类别:
Fellowship
p-Adic variation of motives
动机的 p-Adic 变化
- 批准号:
RGPIN-2022-04711 - 财政年份:2022
- 资助金额:
$ 27.61万 - 项目类别:
Discovery Grants Program - Individual
Research on Motives and Conditions for Development of Rural Community Resources by Agricultural Corporations
农业企业开发农村社区资源的动因与条件研究
- 批准号:
22K05872 - 财政年份:2022
- 资助金额:
$ 27.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum Geometry of Moduli Spaces and Motives
模空间和动机的量子几何
- 批准号:
2153059 - 财政年份:2022
- 资助金额:
$ 27.61万 - 项目类别:
Continuing Grant
Scholars' Award: Human Motives - Egoism, hedonism, and the science of affect
学者奖:人类动机——利己主义、享乐主义和情感科学
- 批准号:
2143473 - 财政年份:2022
- 资助金额:
$ 27.61万 - 项目类别:
Standard Grant