Mathematical Sciences: Mapping Class Groups & Moduli Spaces of Algebraic Curves Conference; August 1991; Seattle, Washington

数学科学:映射类组

基本信息

  • 批准号:
    9108213
  • 负责人:
  • 金额:
    $ 0.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-06-01 至 1992-05-31
  • 项目状态:
    已结题

项目摘要

Mapping class groups and moduli spaces can be approached from several very different directions: through geometric geometry, 3- dimensional topology and hyperbolic geometry; through algebraic geometry (specifically the theory of algebraic curves); and through mathematical physics via conformal field theory. There are also interesting connections with arithmetic groups and representation theory. There is often little communication between the various groups working in this area, and the techniques and proofs of one group are often not well understood by those in another. This grant will partially support a conference whose aim is to assemble experts in these fields, together with graduate students and young mathematicians from the various fields, so that the participants can deepen their understanding of this area. This should result in a good deal of cross-fertilization and progress in algebraic geometry. The conference will be held in August, 1991, at the University of Washington.
映射类群和模空间可以从几个截然不同的方向进行:通过几何几何、3维拓扑和双曲几何;通过代数几何(特别是代数曲线理论);并通过数学物理学通过共形场论。 与算术群和表示论也有有趣的联系。 在这一领域工作的各个小组之间通常很少有交流,并且一个小组的技术和证明往往不能被另一个小组很好地理解。 这笔赠款将部分支持一个会议,该会议的目的是聚集这些领域的专家,以及来自各个领域的研究生和年轻数学家,以便参与者加深对该领域的理解。 这应该会带来大量的交叉融合和代数几何的进步。 会议将于 1991 年 8 月在华盛顿大学举行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Hain其他文献

Predicting death in children
预测儿童死亡
Relative pro-<em>ℓ</em> completions of mapping class groups
  • DOI:
    10.1016/j.jalgebra.2009.02.014
  • 发表时间:
    2009-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Hain;Makoto Matsumoto
  • 通讯作者:
    Makoto Matsumoto
Relative Pro-l Completions of Mapping Class Groups
映射类组的相对 Pro-l 完成
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Hain;Makoto Matsumoto.
  • 通讯作者:
    Makoto Matsumoto.
公正なる世界観,ハイメインテナンス相互作用,制度への信頼が規範的判断に及ぼす影響
公平的世界观、高维护互动以及对机构的信任对规范判断的影响
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Richard Hain;Makoto Matsumoto.;室橋春光;深草茉李・浦光博
  • 通讯作者:
    深草茉李・浦光博
End of life care for infants, children and young people (ENHANCE): Protocol for a mixed methods evaluation of current practice in the United Kingdom [version 1; peer review: awaiting peer review]
婴儿、儿童和青少年的临终关怀(ENHANCE):英国当前实践的混合方法评估协议[版本 1;
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Papworth;Julia Hackett;B. Beresford;F. Murtagh;H. Weatherly;Sebastian Hinde;Andre Bedendo;Gabriella Walker;Jane Noyes;S. Oddie;Chakrapani Vasudevan;R. Feltbower;Bob Phillips;Richard Hain;Gayathri Subramanian;Andrew Haynes;Lorna K Fraser
  • 通讯作者:
    Lorna K Fraser

Richard Hain的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Hain', 18)}}的其他基金

Universal Teichmuller Motives
通用泰希米勒动机
  • 批准号:
    1406420
  • 财政年份:
    2014
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Continuing Grant
Applications of Topology to Arithmetic and Algebraic Geometry
拓扑在算术和代数几何中的应用
  • 批准号:
    1005675
  • 财政年份:
    2010
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Topology and motives associated to moduli spaces of curves
与曲线模空间相关的拓扑和动机
  • 批准号:
    0706955
  • 财政年份:
    2007
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Hodge Theory, Galois Theory and the Topology of Moduli Spaces
霍奇理论、伽罗瓦理论和模空间拓扑
  • 批准号:
    0405440
  • 财政年份:
    2004
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
The Third DMJ/IMRN Conference
第三届DMJ/IMRN会议
  • 批准号:
    0413533
  • 财政年份:
    2004
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
The Topology, Geometry and Arithmetic of Moduli Spaces of Curves
曲线模空间的拓扑、几何与算术
  • 批准号:
    0103667
  • 财政年份:
    2001
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
The Second DMJ/IMRN Conference
第二届 DMJ/IMRN 会议
  • 批准号:
    0103989
  • 财政年份:
    2001
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Modular Forms and Topology
模块化形式和拓扑
  • 批准号:
    9870126
  • 财政年份:
    1998
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representations of Braid and Mapping Class Groups
数学科学:辫子和映射类群的表示
  • 批准号:
    9503069
  • 财政年份:
    1995
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Topology of Varieties
数学科学:簇拓扑
  • 批准号:
    8901608
  • 财政年份:
    1989
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Mapping Class Groups and Teichmueller Spaces
数学科学:映射类组和 Teichmueller 空间
  • 批准号:
    9704817
  • 财政年份:
    1997
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representations of Braid and Mapping Class Groups
数学科学:辫子和映射类群的表示
  • 批准号:
    9503069
  • 财政年份:
    1995
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Mapping Class Group and the Geometry of Teichmuller Space
数学科学:映射类群和 Teichmuller 空间的几何
  • 批准号:
    9503449
  • 财政年份:
    1995
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mapping the Dynamics of Neural Network
数学科学:映射神经网络的动力学
  • 批准号:
    9527954
  • 财政年份:
    1995
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Conformal Mapping
数学科学:共形映射研究
  • 批准号:
    9400733
  • 财政年份:
    1994
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Markov Dependence in Statistics andInformation Theory and Statistical Problems in Physical Mapping"
数学科学:“统计中的马尔可夫依赖性和信息论以及物理绘图中的统计问题”
  • 批准号:
    9322817
  • 财政年份:
    1994
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Mapping Class Groups and TeichmuellerSpaces
数学科学:映射类组和 TeichmuellerSpaces
  • 批准号:
    9401284
  • 财政年份:
    1994
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symplectic Manifolds, Minimal Surfaces and Mapping Class Groups
数学科学:辛流形、最小曲面和映射类群
  • 批准号:
    9305067
  • 财政年份:
    1993
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Study of Holomorphic Mapping Theory and Diophantine Approximations
数学科学:全纯映射理论和丢番图近似的研究
  • 批准号:
    9300526
  • 财政年份:
    1993
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Conformal Mapping, Riemann Surfaces, and Circle Packings
数学科学:共形映射、黎曼曲面和圆堆积
  • 批准号:
    9201747
  • 财政年份:
    1992
  • 资助金额:
    $ 0.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了