Spectral problems in semi-classical analysis, wave and heat trace asymptotics and group actions on symplectic manifolds
半经典分析中的谱问题、波和热迹渐近以及辛流形上的群作用
基本信息
- 批准号:1005696
- 负责人:
- 金额:$ 32.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-1005696Principal Investigator: Victor GuilleminThe principal investigator proposes to study various inverse problems involving the semi-classical Schroedinger operator and, together with Alejandro Uribe and Zuoqin Wang, Zoll-type phenomena for these operators. He also proposes to study, together with Emily Dryden and Rosa Sena-Dias, an equivariant version of the Abreu conjecture: Does the spectrum of the Laplace operator on a toric orbifold determine the orbifold? In addition he proposes to investigate, together with David Jerison, Yves Colin de Verdiere, Steve Zelditch and Hamid Hezari, spectral properties of the wave trace for the Laplace operator on a convex domain in the plane in the vicinity of the perimeter, L. He also proposes to continue his current collaboration with Dan Burns on asymptotic properties of the spectral measures associated with Toeplitz operators on Kahler manifolds and to work with his students on a number of problems in equivariant symplectic geometry: generalizations of the Delzant theorem for Poisson manifolds and manifolds with degenerate symplectic forms and computations in K-cohomology for GKM manifolds. Finally, a long-standing project with Shlomo Sternberg is to write an on-line text book on functorial properties of symplectic manifolds with applications to semi-classical analysis.The overall theme of this proposal is "inverse problems" in spectral theory of which the most famous classical example is Mark Kac's "Can one hear the shape of a drum." What one "hears" in many of the problems above are discrete sets of spectral data: sophisticated versions of the vibrations of a drum, and what one wants to glean from this data are sophisticated versions of the shape of the drum itself. There has been a lot of progress on problems of this type over the last two decades, but there have been as well a number of cautionary counterexamples which show that further progress may require techniques that are still in their infancy. A large part of the focus of this proposal is developing such techniques.
AbstractAward:DMS-1005696首席研究员:维克托Guillemin首席研究员提出研究涉及半经典Schroedinger算子的各种逆问题,以及Alejandro Uribe和Zuoqin Wang,这些算子的Zoll型现象。他还建议研究,连同艾米丽德莱登和罗莎塞纳-迪亚斯,一个等变版本的阿布鲁猜想:频谱的拉普拉斯运营商的复曲面orbifold确定的orbifold?此外,他建议调查,连同大卫Jerison,伊夫科林德Verdiere,史蒂夫Zelditch和哈米德Zeldari,频谱特性的波迹的拉普拉斯经营者在一个凸域在平面上的周边附近,L。他还建议继续他目前的合作与丹伯恩斯的渐近性质的频谱措施与Toeplitz运营商的Kahler流形和工作与他的学生对一些问题的等变辛几何:推广的Delzant定理泊松流形和流形退化辛形式和计算在K-上同调的GKM流形。最后,一个长期的项目与什洛莫斯滕贝格是写一个在线教科书函性质辛流形的应用,以半经典分析。这一建议的总体主题是“逆问题”的谱理论,其中最著名的经典例子是马克卡茨的“可以听到的形状鼓。在上述许多问题中,人们“听到”的是离散的光谱数据集:鼓振动的复杂版本,人们想从这些数据中收集的是鼓本身形状的复杂版本。在过去的二十年里,这类问题已经取得了很大的进展,但也有一些值得警惕的反例表明,进一步的进展可能需要仍处于婴儿期的技术。这项建议的重点很大一部分是发展这种技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victor Guillemin其他文献
On geometric quantization of b-symplectic manifolds
关于b-辛流形的几何量化
- DOI:
10.1016/j.aim.2018.04.003 - 发表时间:
2016 - 期刊:
- 影响因子:1.7
- 作者:
Victor Guillemin;Eva Miranda;J. Weitsman - 通讯作者:
J. Weitsman
Covariant canonical formalism for the group manifold
- DOI:
10.1016/s0003-4916(85)80014-2 - 发表时间:
1985-11-01 - 期刊:
- 影响因子:
- 作者:
Victor Guillemin;Shlomo Sternberg - 通讯作者:
Shlomo Sternberg
Inverse spectral results for non-abelian group actions
非阿贝尔群作用的逆谱结果
- DOI:
10.1016/j.indag.2020.05.004 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Victor Guillemin;Zuoqin Wang - 通讯作者:
Zuoqin Wang
Spectral Properties of Semi-classical Toeplitz Operators
半经典托普利茨算子的谱性质
- DOI:
10.1007/978-3-030-02191-7_7 - 发表时间:
2017-06 - 期刊:
- 影响因子:0
- 作者:
Victor Guillemin;Alej;ro Uribe;Zuoqin Wang - 通讯作者:
Zuoqin Wang
What is the time derivative of a quantum observable?
- DOI:
10.1016/s0003-4916(85)80019-1 - 发表时间:
1985-11-01 - 期刊:
- 影响因子:
- 作者:
Victor Guillemin;Shlomo Sternberg - 通讯作者:
Shlomo Sternberg
Victor Guillemin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victor Guillemin', 18)}}的其他基金
Geometric Microlocal Analysis: A Conference in Honor of Richard B. Melrose
几何微局域分析:纪念 Richard B. Melrose 的会议
- 批准号:
0102791 - 财政年份:2001
- 资助金额:
$ 32.9万 - 项目类别:
Standard Grant
PARTICIPANT TRAVEL SUPPORT: MOORE 50TH CONFERENCE
与会者旅行支持:摩尔第 50 届会议
- 批准号:
9978578 - 财政年份:1999
- 资助金额:
$ 32.9万 - 项目类别:
Standard Grant
Mathematical Sciences: Group Actions, Symplectic Geometry, and Singular Spaces
数学科学:群作用、辛几何和奇异空间
- 批准号:
9404404 - 财政年份:1994
- 资助金额:
$ 32.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Analysis in Manifolds
数学科学:流形几何与分析
- 批准号:
8907710 - 财政年份:1989
- 资助金额:
$ 32.9万 - 项目类别:
Continuing grant
Mathematical Sciences: Geometry and Analysis in Manifolds
数学科学:流形几何与分析
- 批准号:
8603523 - 财政年份:1986
- 资助金额:
$ 32.9万 - 项目类别:
Continuing grant
Mathematical Sciences: Spring Workshop in Lax-Phillips Scattering Theory; Cambridge, Massachusetts; April-May, 1984
数学科学:Lax-Phillips 散射理论春季研讨会;
- 批准号:
8312067 - 财政年份:1984
- 资助金额:
$ 32.9万 - 项目类别:
Standard Grant
Support of a Conference on Functional Analysis and Its Applications to Be Held in Cambridge, Massachusetts, October 24-26, 1979
支持将于 1979 年 10 月 24 日至 26 日在马萨诸塞州剑桥举行的泛函分析及其应用会议
- 批准号:
7902651 - 财政年份:1979
- 资助金额:
$ 32.9万 - 项目类别:
Standard Grant
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Efficient optimization method for optimal contribution problems with semi-integer constraints
半整数约束最优贡献问题的高效优化方法
- 批准号:
18K11176 - 财政年份:2018
- 资助金额:
$ 32.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of fast algorithms for semi-infinite programs with conic constraints and application to practical problems
具有二次曲线约束的半无限规划快速算法的开发及其在实际问题中的应用
- 批准号:
15K15943 - 财政年份:2015
- 资助金额:
$ 32.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of algorithms for solving conic complementarity problems and semi-infinite programming problems, and their applications to transportation planning problems
开发解决二次曲线互补问题和半无限规划问题的算法及其在交通规划问题中的应用
- 批准号:
26330022 - 财政年份:2014
- 资助金额:
$ 32.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the problems of merging turning points via the semi-classical and microlocal analysis
基于半经典和微观局部分析的转折点融合问题研究
- 批准号:
22740094 - 财政年份:2010
- 资助金额:
$ 32.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
- 批准号:
1036361 - 财政年份:2010
- 资助金额:
$ 32.9万 - 项目类别:
Standard Grant
Automated Structure Generation, Error Correction, and Semi-Definite Programming Techniques for Structured Quadratic Inverse Eigenvale Problems: Theory, Algorithms and Applications
结构化二次反特征值问题的自动结构生成、纠错和半定编程技术:理论、算法和应用
- 批准号:
1014666 - 财政年份:2010
- 资助金额:
$ 32.9万 - 项目类别:
Standard Grant
Insider problems in markets driven by semi
半导体驱动的市场内部问题
- 批准号:
22540145 - 财政年份:2010
- 资助金额:
$ 32.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: Algorithmic and Quantitative Problems in Semi-algebraic and O-minimal Geometry
AF:小:半代数和 O 最小几何中的算法和定量问题
- 批准号:
0915954 - 财政年份:2009
- 资助金额:
$ 32.9万 - 项目类别:
Standard Grant
A Computational Study of Nonconvex and Nonlinear Semi-infinite Optimisation Problems in Signal Processing
信号处理中非凸非线性半无限优化问题的计算研究
- 批准号:
DP0881040 - 财政年份:2008
- 资助金额:
$ 32.9万 - 项目类别:
Discovery Projects
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
- 批准号:
0634907 - 财政年份:2006
- 资助金额:
$ 32.9万 - 项目类别:
Standard Grant














{{item.name}}会员




