Scanned-Probe Characterization of Charge Trapping and Fluctuations in Organic Semiconductors

有机半导体中电荷捕获和波动的扫描探针表征

基本信息

  • 批准号:
    1006633
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:A microscopic understanding of the mechanisms of charge trapping, transport, injection, and charge generation in organic semiconductors is presently lacking. The development of organic circuits and solar cells could be greatly accelerated if a better basic understanding of these fundamental processes were available. Improving our basic understanding of fundamental processes in organic semiconductor devices is challenging. Nearly all organic semiconductor devices show significant device-to-device variation, and the most promising devices are often comprised of complex multicomponent blends. To build up a microscopic picture of charge trapping and transport in organic semiconductors, we will study organic devices in situ using vacuum, variable-temperature electric force microscopy. We will use light-enhanced electric force microscopy as a tool to spectroscopically identify impurities, study charge generation, and probe trapping mechanisms in a wide range of organic semiconductors. In a second set of experiments, a high-compliance silicon microcantilever will be used to measure minute electric field gradient fluctuations near the surface of an organic semiconductor. From these electric field fluctuations we propose to deduce (and image) the diffusion constant of charges beneath the cantilever tip. We expect these microscopic studies will open up exciting possibilities for advancing our understanding of charge generation, transport, trapping, and injection in organic semiconductor materials and devices. This project will train graduate students in the arts of advanced scanned probe microscopy and nanofabrication. These students will broaden their training by working on collaborative projects with scientists at academic, federal, and industrial laboratories. This work is funded by the Solid State and Materials Chemistry program.NON-TECHNICAL SUMMARY:In order for our nation to obtain energy independence, we must be able to manufacture solar cells that can convert sunlight efficiently into electricity. Many materials are being examined for use in solar cells, and none work as well as we need. One promising class of materials is semiconducting polymers, plastics that have the remarkable property of being able to both absorb light and conduct electricity. In order to get these materials to work well in solar cells, the materials need to absorb light, the absorbed light must be converted into an electrical current, and the current must be carried through the material and extracted into a wire. These last two processes - the conversion of light to current and the transport of charge - are not well understood in these materials. Without a better understanding of these processes, it is not clear how to manufacture improved solar cells from semiconducting polymers. Characterizing these materials is challenging, because their properties show large variations across distances separated by only 10 billionths to 100 billionths of a meter - distances hundreds to thousands of atoms across. To advance our understanding of semiconducting polymers, we will develop new kinds of microscopes that can take pictures of both moving and stationary charges at this length scale in working solar cells. This work will promote the general welfare by training PhD and undergraduate students to do research in energy-related materials and nanotechnology. This work will involve collaboration and knowledge sharing among multiple universities, government laboratories, and industrial laboratories. This work is funded by the Solid State and Materials Chemistry program of the U.S. National Science Foundation.
技术概述:目前缺乏对有机半导体中电荷捕获、传输、注入和电荷产生机制的微观理解。 如果对这些基本过程有更好的基本理解,有机电路和太阳能电池的发展将大大加快。 提高我们对有机半导体器件基本过程的基本理解是具有挑战性的。 几乎所有的有机半导体器件都表现出显著的器件间差异,并且最有前途的器件通常由复杂的多组分共混物组成。 为了建立有机半导体中电荷捕获和输运的微观图像,我们将使用真空,变温电力显微镜原位研究有机器件。 我们将使用光增强电力显微镜作为一种工具,光谱识别杂质,研究电荷产生,并在广泛的有机半导体探测捕获机制。 在第二组实验中,高顺应性硅微悬臂梁将用于测量有机半导体表面附近的微小电场梯度波动。 从这些电场波动,我们建议推导(和图像)的悬臂梁尖端下方的电荷的扩散常数。 我们预计这些微观研究将为推进我们对有机半导体材料和器件中电荷产生、传输、捕获和注入的理解开辟令人兴奋的可能性。 这个项目将培养研究生在先进的扫描探针显微镜和纳米纤维的艺术。 这些学生将通过与学术,联邦和工业实验室的科学家合作项目来扩大他们的培训。 这项工作是由固态和材料化学计划资助的。非技术总结:为了使我们的国家获得能源独立,我们必须能够制造太阳能电池,可以有效地将阳光转化为电能。 许多材料正在被研究用于太阳能电池,但没有一种材料能像我们需要的那样工作。 一类有前途的材料是半导体聚合物,塑料具有吸收光和导电的显着特性。 为了让这些材料在太阳能电池中工作良好,材料需要吸收光,吸收的光必须转化为电流,电流必须通过材料并提取到电线中。 这最后两个过程-光到电流的转换和电荷的传输-在这些材料中没有得到很好的理解。 如果不更好地理解这些过程,就不清楚如何用半导体聚合物制造改进的太阳能电池。 表征这些材料是具有挑战性的,因为它们的性质在距离仅为100亿分之一到1000亿分之一米的距离上显示出很大的变化-距离为数百到数千个原子。 为了进一步了解半导体聚合物,我们将开发新型显微镜,可以在工作太阳能电池的这个长度尺度上拍摄移动和静止电荷的照片。 这项工作将通过培训博士和本科生从事能源相关材料和纳米技术的研究来促进普遍福利。 这项工作将涉及多所大学、政府实验室和工业实验室之间的合作和知识共享。 这项工作由美国国家科学基金会的固态和材料化学计划资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Marohn其他文献

Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Morning 2
咖啡时间 咖啡时间 咖啡时间 咖啡时间 咖啡时间 咖啡时间 上午 2
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Klein;John Marohn;Beat Meier;Jean;Dan Rugar;E. Cachan;Tremblay Tremblay
  • 通讯作者:
    Tremblay Tremblay
Proponents’ preliminary response to the Report of the Expert Panel to review the proposal for NEWREP-A
支持者对NEWREP-A提案审查专家小组报告的初步回应
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Klein;John Marohn;Beat Meier;Jean;Dan Rugar;E. Cachan;Tremblay Tremblay
  • 通讯作者:
    Tremblay Tremblay

John Marohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Marohn', 18)}}的其他基金

Imaging charge recombination dynamics in organic semiconductor films
有机半导体薄膜中的电荷复合动力学成像
  • 批准号:
    2113994
  • 财政年份:
    2021
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Scanned-probe Characterization of Charge Generation, Recombination, and Motion in Organic Semiconductors
有机半导体中电荷产生、复合和运动的扫描探针表征
  • 批准号:
    1709879
  • 财政年份:
    2017
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Scanned-probe characterization of degradation and charge generation in organic semiconductors
有机半导体降解和电荷产生的扫描探针表征
  • 批准号:
    1309540
  • 财政年份:
    2013
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Electric Force Microscopy Imaging of Fundamental Processes in Organic Electronic Materials
有机电子材料基本过程的电力显微镜成像
  • 批准号:
    0706508
  • 财政年份:
    2007
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Funding for Students to Attend an International Workshop at Cornell; Ithaca, NY; June 21-24, 2006
资助学生参加康奈尔大学国际研讨会;
  • 批准号:
    0634455
  • 财政年份:
    2006
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
CAREER: Variable Temperature Electric Force and Magnetic Resonance Force Microscopy Studies of Organic Electronic Materials
职业:有机电子材料的变温电力和磁共振力显微镜研究
  • 批准号:
    0134956
  • 财政年份:
    2002
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant

相似海外基金

Fundamental studies and novel approaches enabling the generation and characterization of ultrasound and photoacoustic contrast to probe the structure and function of cells, biomaterials and biological systems
基础研究和新方法能够产生和表征超声波和光声对比度,以探测细胞、生物材料和生物系统的结构和功能
  • 批准号:
    RGPIN-2022-04143
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental studies and novel approaches enabling the generation and characterization of ultrasound and photoacoustic contrast to probe the structure and function of cells, biomaterials and biological systems
基础研究和新方法能够产生和表征超声波和光声对比度,以探测细胞、生物材料和生物系统的结构和功能
  • 批准号:
    DGDND-2022-04143
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
MRI: Acquisition of a Multi-Dimensional Nano-Characterization System Based on a Scanning Probe Microscope for Multidisciplinary Materials Research and Education
MRI:获取基于扫描探针显微镜的多维纳米表征系统,用于多学科材料研究和教育
  • 批准号:
    2116353
  • 财政年份:
    2021
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Characterization of Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder Utilizing Ketamine as an Experimental Medicine Probe
利用氯胺酮作为实验医学探针表征共病创伤后应激障碍和重度抑郁症
  • 批准号:
    9892765
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
Characterization of Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder Utilizing Ketamine as an Experimental Medicine Probe
利用氯胺酮作为实验医学探针表征共病创伤后应激障碍和重度抑郁症
  • 批准号:
    10589027
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
Molecular and isotopic characterization of Earth's oldest organic materials using Atom Probe Tomography
使用原子探针断层扫描技术对地球最古老的有机材料进行分子和同位素表征
  • 批准号:
    20KK0081
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Viscoelastic Characterization of Multicellular Tissues in Physiologically Relevant Conditions through Probe Indentation
通过探针压痕对生理相关条件下的多细胞组织进行粘弹性表征
  • 批准号:
    2019507
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Ecophysiological characterization of novel Chloroflexi to probe the evolution of photosynthesis
新型 Chloroflexi 的生态生理学特征探讨光合作用的进化
  • 批准号:
    20F20384
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Characterization of Comorbid Posttraumatic Stress Disorder and Major Depressive Disorder Utilizing Ketamine as an Experimental Medicine Probe
利用氯胺酮作为实验医学探针表征共病创伤后应激障碍和重度抑郁症
  • 批准号:
    10361216
  • 财政年份:
    2020
  • 资助金额:
    $ 39万
  • 项目类别:
Application and characterization of gold nanoparticle mass-probe
金纳米粒子质量探针的应用与表征
  • 批准号:
    19K05528
  • 财政年份:
    2019
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了