Imaging charge recombination dynamics in organic semiconductor films

有机半导体薄膜中的电荷复合动力学成像

基本信息

  • 批准号:
    2113994
  • 负责人:
  • 金额:
    $ 59.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARY: Our economy requires energy to run. Sunlight is a free and essentially limitless source of energy. To exploit this energy source, economical solar cells that can convert sunlight into electrical current and voltage are needed. Existing silicon solar cells are too expensive to create, pattern, and install on a massive scale. Solar cells made from plastics and small molecules, on the other hand, can potentially be as inexpensive as paint to create and as easy as newsprint to pattern at high speed. Plastic/molecular solar cells are being intensely studied worldwide, but how these complex materials convert light to electricity remains a puzzle. With this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, Professor John Marohn and his research group at Cornell University will develop methods for watching how electrical charges in a film activated by sunlight move and relax. The research team will utlizie a specialized microscope which enables the observation of charges moving distances of nanometers (one billionth of a meter) on the timescale of nanoseconds (one billionth of a second). By allowing the observation of charge motion at the molecular level, it is expected that these measurements will significantly advance our understanding of how plastic/molecular solar cell materials convert light into electricity. This research will open new ways to study semiconductor chips and batteries, two growth technologies central to our economy. Researchers funded by this project will develop virtual high-school science experiments on the physics of waves suitable for both in-person and remote learning.TECHNICAL SUMMARY: In the best organic photovoltaic materials, the photocarrier recombination time is anomalously long. If this anomalous behavior could be understood then it could be exploited to improve the open-circuit voltage and current of organic solar cells. This project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, will study charge generation and recombination in organic donor/acceptor (D/A) blends at nanoscale spatial resolution and nanosecond temporal resolution. Proposed experiments include scanning Kelvin probe force microscopy, measuring local electrostatic potential and electric field; broadband local dielectric spectroscopy, measuring local steady-state conductivity and energetic disorder; and "phase-kick" electric force microscopy (pk-EFM), measuring transient conductivity. Charge mobility will be studied in single-component films by simultaneously measuring device current and local electric field. Charge recombination transients in D/A blends prepared on both insulating and metallic substrates will be recorded using pk-EFM and compared to bulk time-resolved microwave conductivity measurements. The drift and diffusion of photogenerated charges in inhomogeneous D/A blends will be observed stroboscopically via pk-EFM. Films comprised of polymer donors with both fullerene and non-fullerene acceptors will be examined. It is expected that the microscopic material parameters gleaned from these measurements will enable the rigorous testing of charge-recombination hypotheses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性综述:我们的经济需要能源才能运行。阳光是一种免费的、本质上是无限的能源。为了开发这种能源,需要能够将太阳光转化为电流和电压的经济型太阳能电池。现有的硅太阳能电池过于昂贵,无法大规模制造、构图和安装。另一方面,由塑料和小分子制成的太阳能电池可能像涂料一样便宜,像新闻纸一样容易高速打印。塑料/分子太阳能电池正在全球范围内得到深入研究,但这些复合材料如何将光转化为电能仍然是一个谜。在材料研究部固态和材料化学计划的支持下,康奈尔大学的约翰·马罗恩教授和他的研究小组将开发出观察薄膜中的电荷如何在阳光下运动和松弛的方法。研究小组将使用一种特殊的显微镜,能够在纳秒(十亿分之一秒)的时间尺度上观察电荷移动纳米(十亿分之一米)的距离。通过在分子水平上观察电荷运动,预计这些测量将极大地促进我们对塑料/分子太阳能电池材料如何将光转化为电能的理解。这项研究将为研究半导体芯片和电池开辟新的途径,这两项增长技术对我们的经济至关重要。由该项目资助的研究人员将开发适用于现场和远程学习的虚拟高中波物理科学实验。技术摘要:在最好的有机光伏材料中,光载体复合时间异常长。如果这种反常行为能够被理解,那么就可以利用它来改善有机太阳能电池的开路电压和电流。该项目由材料研究部的固态和材料化学计划支持,将在纳米尺度的空间分辨率和纳秒的时间分辨率下研究有机给体/受体(D/A)共混物中电荷的产生和复合。拟议的实验包括扫描开尔文探针力显微镜,测量局部静电势和电场;宽带局部介电光谱,测量局部稳态电导率和能量无序;以及“相位踢”电力显微镜(PK-EFM),测量瞬时电导率。通过同时测量器件电流和局域电场来研究单组分薄膜中的电荷迁移率。在绝缘和金属衬底上制备的D/A混合物中的电荷复合瞬变将使用PK-EFM记录下来,并与整体时间分辨微波电导率测量进行比较。利用PK-EFM对非均匀D/A共混物中光生电荷的漂移和扩散进行了频闪观测。由富勒烯和非富勒烯受体的聚合物给体组成的薄膜将被检查。预计从这些测量中收集的微观材料参数将能够对电荷复合假说进行严格测试。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Marohn其他文献

Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Coffee Break Morning 2
咖啡时间 咖啡时间 咖啡时间 咖啡时间 咖啡时间 咖啡时间 上午 2
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Klein;John Marohn;Beat Meier;Jean;Dan Rugar;E. Cachan;Tremblay Tremblay
  • 通讯作者:
    Tremblay Tremblay
Proponents’ preliminary response to the Report of the Expert Panel to review the proposal for NEWREP-A
支持者对NEWREP-A提案审查专家小组报告的初步回应
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olivier Klein;John Marohn;Beat Meier;Jean;Dan Rugar;E. Cachan;Tremblay Tremblay
  • 通讯作者:
    Tremblay Tremblay

John Marohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Marohn', 18)}}的其他基金

Scanned-probe Characterization of Charge Generation, Recombination, and Motion in Organic Semiconductors
有机半导体中电荷产生、复合和运动的扫描探针表征
  • 批准号:
    1709879
  • 财政年份:
    2017
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Standard Grant
Scanned-probe characterization of degradation and charge generation in organic semiconductors
有机半导体降解和电荷产生的扫描探针表征
  • 批准号:
    1309540
  • 财政年份:
    2013
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Standard Grant
Scanned-Probe Characterization of Charge Trapping and Fluctuations in Organic Semiconductors
有机半导体中电荷捕获和波动的扫描探针表征
  • 批准号:
    1006633
  • 财政年份:
    2010
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Continuing Grant
Electric Force Microscopy Imaging of Fundamental Processes in Organic Electronic Materials
有机电子材料基本过程的电力显微镜成像
  • 批准号:
    0706508
  • 财政年份:
    2007
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Continuing Grant
Funding for Students to Attend an International Workshop at Cornell; Ithaca, NY; June 21-24, 2006
资助学生参加康奈尔大学国际研讨会;
  • 批准号:
    0634455
  • 财政年份:
    2006
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Standard Grant
CAREER: Variable Temperature Electric Force and Magnetic Resonance Force Microscopy Studies of Organic Electronic Materials
职业:有机电子材料的变温电力和磁共振力显微镜研究
  • 批准号:
    0134956
  • 财政年份:
    2002
  • 资助金额:
    $ 59.26万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于电荷泄漏与静电击穿效应的摩擦纳米发电机及电荷转移机制研 究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
染色质重塑因子CHD7在胚胎发育神经胚形成阶段的功能研究
  • 批准号:
    81974229
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
Sema3E在CHARGE综合症中的作用及机制研究
  • 批准号:
    81160144
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Expressing a novel class of heavy chain antibodies
表达一类新型重链抗体
  • 批准号:
    10432883
  • 财政年份:
    2022
  • 资助金额:
    $ 59.26万
  • 项目类别:
Cellular Phylogenetics and Evolution
细胞系统发育学和进化
  • 批准号:
    10598598
  • 财政年份:
    2022
  • 资助金额:
    $ 59.26万
  • 项目类别:
Expressing a novel class of heavy chain antibodies
表达一类新型重链抗体
  • 批准号:
    10555257
  • 财政年份:
    2022
  • 资助金额:
    $ 59.26万
  • 项目类别:
Cellular Phylogenetics and Evolution
细胞系统发育学和进化
  • 批准号:
    10418915
  • 财政年份:
    2022
  • 资助金额:
    $ 59.26万
  • 项目类别:
Development of Multilayer Strip Ion Chamber Device for the Measurement of Proton FLASH-Radiotherapy
用于测量质子闪光放射治疗的多层条形电离室装置的开发
  • 批准号:
    10714482
  • 财政年份:
    2022
  • 资助金额:
    $ 59.26万
  • 项目类别:
CIDR – IDENTIFICATION OF MODIFIERS OF 22Q11.2 DELETION SYNDROME BY WHOLE GENOME SEQUENCING IN BLOOD DNA (MORROW)
CIDR — 通过血液 DNA 中的全基因组测序鉴定 22Q11.2 缺失综合征的修饰因子(明天)
  • 批准号:
    10709067
  • 财政年份:
    2022
  • 资助金额:
    $ 59.26万
  • 项目类别:
Technology Development: Tailored Nano-Molecular Systems for New Modes of Reactivity
技术开发:用于新反应模式的定制纳米分子系统
  • 批准号:
    10401246
  • 财政年份:
    2021
  • 资助金额:
    $ 59.26万
  • 项目类别:
Technology Development: Tailored Nano-Molecular Systems for New Modes of Reactivity
技术开发:用于新反应模式的定制纳米分子系统
  • 批准号:
    10193067
  • 财政年份:
    2021
  • 资助金额:
    $ 59.26万
  • 项目类别:
Temperature Dependent Charge Carrier Recombination in Organic Metal Halide Perovskite Photodetectors
有机金属卤化物钙钛矿光电探测器中与温度相关的载流子复合
  • 批准号:
    494710706
  • 财政年份:
    2021
  • 资助金额:
    $ 59.26万
  • 项目类别:
    WBP Fellowship
The Role of an MSH6 Gene Variant and UV Radiation in Systemic Lupus Erythematosus
MSH6 基因变异和紫外线辐射在系统性红斑狼疮中的作用
  • 批准号:
    10054266
  • 财政年份:
    2020
  • 资助金额:
    $ 59.26万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了