Collaborative Research: Phantom traffic jams, continuum modeling, and connections with detonation wave theory
合作研究:虚拟交通堵塞、连续介质建模以及与爆震波理论的联系
基本信息
- 批准号:1007899
- 负责人:
- 金额:$ 10.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Initially homogeneous traffic flow can become inhomogeneous even in the absence of obstructions of any kind, leading to the formation of ''phantom'' traffic jams. Phantom traffic jams can be explained as instabilities that occur in certain types of macroscopic traffic models. Under appropriate conditions, if the traffic density exceeds a critical threshold value, small perturbations amplify and grow into nonlinear traveling waves. These traffic waves, called jamitons, are observed in reality and have been reproduced experimentally. In this project, a mathematical analogy between jamitons and detonation waves in reacting gas dynamics is established and exploited: phantom traffic jams are the analogs of instabilities in the fluid's motion, and jamitons are the analogs of detonation waves. Using the Zel'dovich-von Neumann-Doering theory from combustion theory, the analogy allows the prediction of the exact shape and travel velocity of the jamitons. A key feature in the analysis is the presence of a sonic point, which acts as an event horizon (similar to the one that occurs in a black hole) across which information cannot propagate. Traffic waves are studied theoretically and by numerical simulations. A particular goal is to understand phantom traffic jams well enough to allow the development of effective countermeasures.A ''phantom'' traffic jam is a small congestion in vehicular traffic that occurs spontaneously, in the absence of bottlenecks, obstacles, or any discernible causes on the road. Observations show that uniform traffic flow can develop inhomogeneities, which turn into traveling traffic jams. These traffic jam waves (''jamitons'') enforce unexpected braking maneuvers, and thus impose stress on drivers and materials, waste fuel and increase pollution, and are hot spots for potential vehicle collisions. In this project, the behavior of phantom traffic jams and jamitons is studied. Theoretical analogies between traffic modeling and gas dynamics, hydraulics, and astrophysics, are established and used to advance the understanding of traffic flow. These connections yield insight into the situations under which phantom traffic jams can occur, and allow the prediction of the shape and velocity of the resulting jamitons. A fundamental understanding of phantom traffic jams is a key step in devising appropriate countermeasures to avoid or ameliorate them. The development of effective ways to manage or prevent phantom traffic jams could have a considerable impact on the reduction of fuel consumption and pollution. Two possible strategies that will be incorporated into the models and investigated are: assisted driving devices in the individual vehicles, and adaptively controlled speed limits on highways. A crucial component of this study is the interplay between theoretical analysis and numerical experiments. The research in this project involves three international collaborations, as well as graduate and undergraduate research projects.
最初均匀的交通流即使在没有任何障碍物的情况下也会变得不均匀,从而导致“幻影”交通堵塞的形成。幻影交通堵塞可以解释为发生在某些类型的宏观交通模型中的不稳定性。在适当的条件下,如果交通密度超过临界阈值,小扰动放大并成长为非线性行波。这些交通波,称为干扰,在现实中观察到,并已被实验重现。在这个项目中,建立并利用了反应气体动力学中的干扰和爆震波之间的数学类比:幻影交通堵塞是流体运动中的不稳定性的类比,干扰是爆震波的类比。使用燃烧理论中的Zel'dovich-von Neumann-Doering理论,该类比允许预测干扰子的确切形状和行进速度。分析中的一个关键特征是存在一个声波点,它作为一个事件视界(类似于黑洞中发生的事件视界),信息不能传播。对交通波进行了理论分析和数值模拟。一个特别的目标是充分了解幻影交通堵塞,以便制定有效的对策。“幻影”交通堵塞是在没有瓶颈、障碍物或道路上任何可识别的原因的情况下自发发生的车辆交通中的小拥堵。观察表明,均匀的交通流可能会发展出不均匀性,从而导致交通堵塞。这些交通堵塞波(“堵塞”)强制执行意外的制动操作,从而对驾驶员和材料施加压力,浪费燃料并增加污染,并且是潜在车辆碰撞的热点。在这个项目中,幻影交通堵塞和拥堵的行为进行了研究。交通建模和气体动力学,水力学和天体物理学之间的理论类比,建立和用于推进交通流的理解。这些连接产生洞察的情况下,幻影交通堵塞可能发生,并允许预测的形状和速度的结果堵塞。对幻影交通拥堵的基本理解是设计适当对策以避免或改善它们的关键一步。开发有效的方法来管理或防止虚幻的交通堵塞,可以对减少燃料消耗和污染产生相当大的影响。两种可能的策略,将被纳入模型和调查是:辅助驾驶装置在个别车辆,自适应控制的高速公路上的速度限制。本研究的一个重要组成部分是理论分析和数值实验之间的相互作用。该项目的研究涉及三个国际合作,以及研究生和本科生的研究项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Seibold其他文献
Minimal positive stencils in meshfree finite difference methods for the Poisson equation
- DOI:
10.1016/j.cma.2008.09.001 - 发表时间:
2008-02 - 期刊:
- 影响因子:7.2
- 作者:
Benjamin Seibold - 通讯作者:
Benjamin Seibold
Macroscopic Manifestations of Traffic Waves in Microscopic Models
交通波在微观模型中的宏观表现
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nour Khoudari;Rabie Ramadan;Megan Ross;Benjamin Seibold - 通讯作者:
Benjamin Seibold
Optimal prediction for moment models: crescendo diffusion and reordered equations
矩模型的最优预测:渐强扩散和重新排序的方程
- DOI:
10.1007/s00161-009-0111-7 - 发表时间:
2009 - 期刊:
- 影响因子:2.6
- 作者:
Benjamin Seibold;M. Frank - 通讯作者:
M. Frank
The Flow Equation Approach To Many Particle Systems Springer Tracts In Modern Physics 217 Band 217 By Stefan Kehrein
许多粒子系统的流动方程方法 现代物理学 Springer Tracts 217 Band 217 作者:Stefan Kehrein
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Benjamin Seibold - 通讯作者:
Benjamin Seibold
Optimal Prediction in Molecular Dynamics
分子动力学中的最优预测
- DOI:
10.1515/156939604323091199 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Benjamin Seibold - 通讯作者:
Benjamin Seibold
Benjamin Seibold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Seibold', 18)}}的其他基金
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309728 - 财政年份:2023
- 资助金额:
$ 10.73万 - 项目类别:
Standard Grant
Flexible and Scalable Moment Method Simulations for Radiation Transport and Nuclear Medicine Applications
适用于辐射传输和核医学应用的灵活且可扩展的矩量法模拟
- 批准号:
1952878 - 财政年份:2020
- 资助金额:
$ 10.73万 - 项目类别:
Continuing Grant
Collaborative Research: Euler-Based Time-Stepping with Optimal Stability and Accuracy for Partial Differential Equations
协作研究:具有最佳稳定性和精度的偏微分方程基于欧拉的时间步进
- 批准号:
2012271 - 财政年份:2020
- 资助金额:
$ 10.73万 - 项目类别:
Standard Grant
Collaborative Research: Overcoming Order Reduction and Stability Restrictions in High-Order Time-Stepping
协作研究:克服高阶时间步长中的阶数降低和稳定性限制
- 批准号:
1719640 - 财政年份:2017
- 资助金额:
$ 10.73万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
- 批准号:
1446690 - 财政年份:2015
- 资助金额:
$ 10.73万 - 项目类别:
Standard Grant
A computational framework for atherosclerotic plaque growth simulations
动脉粥样硬化斑块生长模拟的计算框架
- 批准号:
1318641 - 财政年份:2013
- 资助金额:
$ 10.73万 - 项目类别:
Continuing Grant
Collaborative Research: Gradient-augmented level set methods and jet schemes
合作研究:梯度增强水平集方法和喷射方案
- 批准号:
1318709 - 财政年份:2013
- 资助金额:
$ 10.73万 - 项目类别:
Continuing Grant
Collaborative Research: Numerical approaches for incompressible viscous flows with high order accuracy up to the boundary
合作研究:不可压缩粘性流的数值方法,具有高阶精度直至边界
- 批准号:
1115269 - 财政年份:2011
- 资助金额:
$ 10.73万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 10.73万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 10.73万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 10.73万 - 项目类别:
Training Grant