Collaborative Research: Numerical approaches for incompressible viscous flows with high order accuracy up to the boundary

合作研究:不可压缩粘性流的数值方法,具有高阶精度直至边界

基本信息

  • 批准号:
    1115269
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

The research in this project focuses on the development, analysis, and implementation of efficient strategies to solve incompressible viscous flow problems with high order accuracy up to the boundary, with specific emphasis on the accurate calculation of stresses at the boundaries. To that end, Pressure Poisson Equation (PPE) reformulations of the time-dependent Navier-Stokes equations are considered. These reformulations are equivalent to the original equation, however, they yield explicit boundary conditions for the fluid pressure. As a consequence, numerical discretizations of PPE reformulations do not suffer from certain problems that traditional projection techniques incur, such as numerical boundary layers and inaccuracies in stresses at boundaries. The goal of this project is the exploitation of this fundamental advantage to develop effective, and high order accurate, implementations for incompressible viscous fluid flows in general domains, using various techniques such as finite elements, finite differences, and meshfree particle methods.Moreover, the numerical approximation of the actual Pressure Poisson Equations is a rich source of questions of interest to the numerical linear algebra community, and this project involves interactions with collaborators from that area.In many applications in science and engineering, the accurate and efficient computation of forces and stresses at boundaries between fluids and solids is of crucial importance. Examples in which boundary forces (in the form of lift and drag) are key quantities of interest are the design of airplane wings, motor vehicles, and wind turbines, as well as the simulation of sedimentation in stratified fluids and bio-locomotion. The investigators are researching new methodologies and implementations of approaches that allow for a highly accurate computation of these boundary forces. This project relates developments in computational fluid dynamics with both theoretical aspects regarding the mathematical structure of the equations of incompressible flows, as well as fundamental questions that arise in the effective solution of large systems of equations. The involvement and training of graduate students is an important component of this project.
这个项目的研究重点是开发、分析和实施有效的策略来解决高精度到边界的不可压缩粘性流动问题,特别是精确计算边界处的应力。为此,考虑了含时N-S方程的压力-泊松方程(PPE)重构。这些重新公式与原始方程等价,但它们给出了流体压力的显式边界条件。因此,PPE重构的数值离散不会受到传统投影技术引起的某些问题的影响,例如数值边界层和边界应力的不准确。这个项目的目标是利用这一基本优势,利用有限元、有限差分和无网格质点方法等各种技术,在一般区域内开发有效的、高精度的不可压缩粘性流体流动的实现。此外,实际压力泊松方程的数值逼近是数值线性代数社区感兴趣的丰富问题的来源,本项目涉及到与该领域的合作者的相互作用。在许多科学和工程应用中,流体和固体边界处力和应力的准确和高效的计算是至关重要的。例如,飞机机翼、机动车辆和风力涡轮机的设计,以及分层流体中的沉积和生物运动的模拟,边界力(以升力和阻力的形式)是关键的量。调查人员正在研究新的方法和办法的实施,以便能够高度准确地计算这些边界力。该项目涉及计算流体力学的发展,包括关于不可压缩流动方程的数学结构的理论方面,以及在有效求解大型方程组中出现的基本问题。研究生的参与和培养是该项目的重要组成部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Seibold其他文献

Minimal positive stencils in meshfree finite difference methods for the Poisson equation
Macroscopic Manifestations of Traffic Waves in Microscopic Models
交通波在微观模型中的宏观表现
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nour Khoudari;Rabie Ramadan;Megan Ross;Benjamin Seibold
  • 通讯作者:
    Benjamin Seibold
Optimal prediction for moment models: crescendo diffusion and reordered equations
矩模型的最优预测:渐强扩散和重新排序的方程
The Flow Equation Approach To Many Particle Systems Springer Tracts In Modern Physics 217 Band 217 By Stefan Kehrein
许多粒子系统的流动方程方法 现代物理学 Springer Tracts 217 Band 217 作者:Stefan Kehrein
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Seibold
  • 通讯作者:
    Benjamin Seibold
Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models
在二阶流量模型中根据 Jamiton 解决方案构建集值基本图
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Seibold;M. Flynn;A. Kasimov;R. Rosales
  • 通讯作者:
    R. Rosales

Benjamin Seibold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Seibold', 18)}}的其他基金

Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309728
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Flexible and Scalable Moment Method Simulations for Radiation Transport and Nuclear Medicine Applications
适用于辐射传输和核医学应用的灵活且可扩展的矩量法模拟
  • 批准号:
    1952878
  • 财政年份:
    2020
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Euler-Based Time-Stepping with Optimal Stability and Accuracy for Partial Differential Equations
协作研究:具有最佳稳定性和精度的偏微分方程基于欧拉的时间步进
  • 批准号:
    2012271
  • 财政年份:
    2020
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Overcoming Order Reduction and Stability Restrictions in High-Order Time-Stepping
协作研究:克服高阶时间步长中的阶数降低和稳定性限制
  • 批准号:
    1719640
  • 财政年份:
    2017
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
  • 批准号:
    1446690
  • 财政年份:
    2015
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
A computational framework for atherosclerotic plaque growth simulations
动脉粥样硬化斑块生长模拟的计算框架
  • 批准号:
    1318641
  • 财政年份:
    2013
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Gradient-augmented level set methods and jet schemes
合作研究:梯度增强水平集方法和喷射方案
  • 批准号:
    1318709
  • 财政年份:
    2013
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Phantom traffic jams, continuum modeling, and connections with detonation wave theory
合作研究:虚拟交通堵塞、连续介质建模以及与爆震波理论的联系
  • 批准号:
    1007899
  • 财政年份:
    2010
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
  • 批准号:
    2308090
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319536
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
  • 批准号:
    2319142
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了