A computational framework for atherosclerotic plaque growth simulations
动脉粥样硬化斑块生长模拟的计算框架
基本信息
- 批准号:1318641
- 负责人:
- 金额:$ 8.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigators develop a computational framework for the growth of atherosclerotic plaques in large arteries. Specific emphasis is placed on the nonlinear constitutive models for the arterial wall, including residual stresses, and on the bridging of the highly separated time scales that govern this process. This study focuses on the incompressible Navier-Stokes equations that describe the blood flow, coupled with nonlinear elasticity equations that govern the response of the diseased arterial walls. The actual plaque growth process exhibits a large separation of time scales between the growth of the plaque, which takes place over a course of years, and the heart rate, which is in the order of seconds. The investigators develop a methodology to couple a growth model with the fluid-structure interaction problem in a way that the fundamental challenges incurred by the separation of time scales are resolved. In addition, the computational framework allows for the incorporation of variable behavioral factors, such as physical activity and cholesterol concentration in the blood.While it is known that the rupturing of an atherosclerotic plaque can cause a heart attack, the actual growth process of plaques in arteries is far from well understood. In this project, a computational framework is developed that bridges the highly separated time scales between the plaque growth and the heart rate, and that allows for the incorporation of accurate models for the elastic arterial walls. This new framework can yield fundamental insights into the long-term causes of atherosclerosis, and the dependence of the disease on behavioral factors such as physical activity, cholesterol intake, and tobacco use. In addition, the methodologies developed in this project can find applications in the modeling of damage in elastic materials, other diseases that develop over a large time span such as abdominal aortic aneurysms and intimal hyperplasia, and biological phenomena such as the growth and transport of algae in channel flows and the growth of biofilms. This project involves a collaboration with engineers who measure residual stresses in arteries experimentally.
研究人员开发了一个计算框架,用于大动脉粥样硬化斑块的生长。特别强调了动脉壁的非线性本构模型,包括残余应力,以及控制这一过程的高度分离的时间尺度的桥接。本研究的重点是描述血流的不可压缩Navier-Stokes方程,以及控制病变动脉壁反应的非线性弹性方程。实际的斑块生长过程在斑块生长的时间尺度上有很大的差异,斑块的生长是在几年的时间里发生的,而心率则是在几秒钟的时间里。研究人员开发了一种方法,将增长模型与流固相互作用问题相结合,从而解决了时间尺度分离所带来的基本挑战。此外,计算框架允许将可变的行为因素结合起来,例如身体活动和血液中的胆固醇浓度。虽然我们知道动脉粥样硬化斑块的破裂会导致心脏病发作,但动脉中斑块的实际生长过程还远未被充分了解。在这个项目中,开发了一个计算框架,将斑块生长和心率之间高度分离的时间尺度连接起来,并允许将弹性动脉壁的精确模型结合起来。这个新的框架可以对动脉粥样硬化的长期原因以及疾病对行为因素(如体育活动、胆固醇摄入和烟草使用)的依赖产生根本性的见解。此外,本项目开发的方法可以应用于弹性材料损伤的建模,其他长时间发展的疾病,如腹主动脉瘤和内膜增生,以及生物现象,如藻类在河道流动中的生长和运输以及生物膜的生长。这个项目涉及与工程师合作,他们通过实验测量动脉的残余应力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Seibold其他文献
Minimal positive stencils in meshfree finite difference methods for the Poisson equation
- DOI:
10.1016/j.cma.2008.09.001 - 发表时间:
2008-02 - 期刊:
- 影响因子:7.2
- 作者:
Benjamin Seibold - 通讯作者:
Benjamin Seibold
Macroscopic Manifestations of Traffic Waves in Microscopic Models
交通波在微观模型中的宏观表现
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nour Khoudari;Rabie Ramadan;Megan Ross;Benjamin Seibold - 通讯作者:
Benjamin Seibold
Optimal prediction for moment models: crescendo diffusion and reordered equations
矩模型的最优预测:渐强扩散和重新排序的方程
- DOI:
10.1007/s00161-009-0111-7 - 发表时间:
2009 - 期刊:
- 影响因子:2.6
- 作者:
Benjamin Seibold;M. Frank - 通讯作者:
M. Frank
The Flow Equation Approach To Many Particle Systems Springer Tracts In Modern Physics 217 Band 217 By Stefan Kehrein
许多粒子系统的流动方程方法 现代物理学 Springer Tracts 217 Band 217 作者:Stefan Kehrein
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Benjamin Seibold - 通讯作者:
Benjamin Seibold
Constructing set-valued fundamental diagrams from Jamiton solutions in second order traffic models
在二阶流量模型中根据 Jamiton 解决方案构建集值基本图
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Benjamin Seibold;M. Flynn;A. Kasimov;R. Rosales - 通讯作者:
R. Rosales
Benjamin Seibold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Seibold', 18)}}的其他基金
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309728 - 财政年份:2023
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
Flexible and Scalable Moment Method Simulations for Radiation Transport and Nuclear Medicine Applications
适用于辐射传输和核医学应用的灵活且可扩展的矩量法模拟
- 批准号:
1952878 - 财政年份:2020
- 资助金额:
$ 8.63万 - 项目类别:
Continuing Grant
Collaborative Research: Euler-Based Time-Stepping with Optimal Stability and Accuracy for Partial Differential Equations
协作研究:具有最佳稳定性和精度的偏微分方程基于欧拉的时间步进
- 批准号:
2012271 - 财政年份:2020
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
Collaborative Research: Overcoming Order Reduction and Stability Restrictions in High-Order Time-Stepping
协作研究:克服高阶时间步长中的阶数降低和稳定性限制
- 批准号:
1719640 - 财政年份:2017
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
- 批准号:
1446690 - 财政年份:2015
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
Collaborative Research: Gradient-augmented level set methods and jet schemes
合作研究:梯度增强水平集方法和喷射方案
- 批准号:
1318709 - 财政年份:2013
- 资助金额:
$ 8.63万 - 项目类别:
Continuing Grant
Collaborative Research: Numerical approaches for incompressible viscous flows with high order accuracy up to the boundary
合作研究:不可压缩粘性流的数值方法,具有高阶精度直至边界
- 批准号:
1115269 - 财政年份:2011
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
Collaborative Research: Phantom traffic jams, continuum modeling, and connections with detonation wave theory
合作研究:虚拟交通堵塞、连续介质建模以及与爆震波理论的联系
- 批准号:
1007899 - 财政年份:2010
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
相似海外基金
Safe and Sustainable by Design framework for the next generation of Chemicals and Materials
下一代化学品和材料的安全和可持续设计框架
- 批准号:
10110559 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
EU-Funded
Law And Policy Framework For Remote Sensing In Maritime Enforcement
海事执法遥感法律和政策框架
- 批准号:
DP240100920 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
Discovery Projects
A Novel Surrogate Framework for evaluating THM Properties of Bentonite
评估膨润土 THM 性能的新型替代框架
- 批准号:
DP240102053 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
Discovery Projects
NESP MaC Project 4.5– Developing an Integrated Pest Management Framework for Feral Pigs in Coastal Environments 2024-2026 (NAILSMA)
NESP MaC 项目 4.5 — 为 2024-2026 年沿海环境中的野猪制定综合害虫管理框架 (NAILSMA)
- 批准号:
global : ba1e00f0-9953-4c17-b990-ba7aed84ce07 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
An interdisciplinary analytical framework for high-mountain landslides and cascading hazards: implications for communities and infrastructure
高山滑坡和级联灾害的跨学科分析框架:对社区和基础设施的影响
- 批准号:
NE/Z503502/1 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
Research Grant
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
- 批准号:
2326816 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
- 批准号:
2337176 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
- 批准号:
2337991 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant
CAREER: Resilient and Efficient Automatic Control in Energy Infrastructure: An Expert-Guided Policy Optimization Framework
职业:能源基础设施中的弹性和高效自动控制:专家指导的政策优化框架
- 批准号:
2338559 - 财政年份:2024
- 资助金额:
$ 8.63万 - 项目类别:
Standard Grant