Collaborative Research: Overcoming Order Reduction and Stability Restrictions in High-Order Time-Stepping
协作研究:克服高阶时间步长中的阶数降低和稳定性限制
基本信息
- 批准号:1719640
- 负责人:
- 金额:$ 17.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops new computational approaches that remedy fundamental accuracy shortcomings of existing time-stepping methods, and increase their stability and robustness. A wide variety of practical applications, including fluid flows, quantum physics, heat and neutron transport, materials science, and many complex multi-physics problems, require the numerical simulation of models that involve a time evolution. This time evolution must be performed in a way that the high accuracy of modern computational methods is retained. This project addresses fundamental challenges that arise in this context, and delivers superior numerical methods that could replace existing time-stepping schemes currently used in computational science and engineering practice. This project provides a multi-institution collaboration, including two early-career researchers, and it involves the training of a PhD student.The research in this project addresses two aspects in high-order time-stepping: order reduction in Runge-Kutta methods; and unconditionally stable ImEx linear multistep methods. A specific focus lies on time-stepping for partial differential equations. For those, order reduction can be associated with numerical boundary layers, caused by multi-stage time-stepping schemes. Based on this geometric understanding of the phenomenon, remedies for order reduction are developed. This includes the concept of weak stage order, as well as modified boundary conditions. An alternative avenue to avoid order reduction is provided by multistep methods. The key challenge here is their rather restrictive stability behavior. Based on a new stability theory for ImEx multistep methods, this project develops novel schemes that can, for certain problems, achieve unconditional stability. The new schemes can be included into many existing computational codes via a simple modification of the time-stepping coefficients, thus enabling practitioners to select the time step based solely on accuracy considerations.
该项目开发了新的计算方法,弥补了现有时间步进方法的基本精度缺陷,并提高了其稳定性和鲁棒性。各种各样的实际应用,包括流体流动,量子物理,热和中子输运,材料科学和许多复杂的多物理问题,需要涉及时间演化的模型的数值模拟。这种时间演化必须以保持现代计算方法的高精度的方式进行。该项目解决了在这种情况下出现的根本性挑战,并提供了上级数值方法,可以取代目前在计算科学和工程实践中使用的现有的时间步进计划。该项目提供了一个多机构的合作,包括两个早期的职业生涯的研究人员,它涉及到一个博士生的培训。在这个项目中的研究解决了高阶时间步长的两个方面:减少的Runge-Kutta方法和无条件稳定的ImEx线性多步方法。一个具体的重点在于时间步进偏微分方程。对于那些,可以与数值边界层,所造成的多级时间步进格式的订单减少。基于这种几何理解的现象,补救措施减少。这包括弱级阶的概念,以及修改的边界条件。多步法提供了避免降阶的另一种途径。这里的关键挑战是它们相当有限的稳定性行为。基于ImEx多步法的新稳定性理论,该项目开发了新的方案,对于某些问题,可以实现无条件稳定。新的计划可以包括到许多现有的计算代码通过一个简单的修改的时间步进系数,从而使从业者选择的时间步长的基础上,仅仅考虑精度。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tracking vehicle trajectories and fuel rates in phantom traffic jams: Methodology and data
- DOI:10.1016/j.trc.2018.12.012
- 发表时间:2019-02
- 期刊:
- 影响因子:0
- 作者:Fangyu Wu;Raphael E. Stern;Shumo Cui;Maria Laura Delle Monache;R. Bhadani;Matt Bunting;M. Churchill
- 通讯作者:Fangyu Wu;Raphael E. Stern;Shumo Cui;Maria Laura Delle Monache;R. Bhadani;Matt Bunting;M. Churchill
Two-dimensional macroscopic model for large scale traffic networks
- DOI:10.1016/j.trb.2019.02.016
- 发表时间:2019-04
- 期刊:
- 影响因子:0
- 作者:S. Mollier;Maria Laura Delle Monache;C. Canudas-de-Wit;Benjamin Seibold
- 通讯作者:S. Mollier;Maria Laura Delle Monache;C. Canudas-de-Wit;Benjamin Seibold
A comparative study of limiting strategies in discontinuous Galerkin schemes for the M1 model of radiation transport
- DOI:10.1016/j.cam.2018.04.017
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:Prince Chidyagwai;M. Frank;F. Schneider;Benjamin Seibold
- 通讯作者:Prince Chidyagwai;M. Frank;F. Schneider;Benjamin Seibold
DIRK Schemes with High Weak Stage Order
具有高弱阶段顺序的 DIRK 方案
- DOI:10.1007/978-3-030-39647-3_36
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Ketcheson, D.;Seibold, B.;Shirokoff, D.;Zhou, D.
- 通讯作者:Zhou, D.
Unconditional stability for multistep ImEx schemes: Practice
- DOI:10.1016/j.jcp.2018.09.044
- 发表时间:2018-04
- 期刊:
- 影响因子:0
- 作者:Benjamin Seibold;D. Shirokoff;Dong Zhou
- 通讯作者:Benjamin Seibold;D. Shirokoff;Dong Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Seibold其他文献
Minimal positive stencils in meshfree finite difference methods for the Poisson equation
- DOI:
10.1016/j.cma.2008.09.001 - 发表时间:
2008-02 - 期刊:
- 影响因子:7.2
- 作者:
Benjamin Seibold - 通讯作者:
Benjamin Seibold
Macroscopic Manifestations of Traffic Waves in Microscopic Models
交通波在微观模型中的宏观表现
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Nour Khoudari;Rabie Ramadan;Megan Ross;Benjamin Seibold - 通讯作者:
Benjamin Seibold
Optimal prediction for moment models: crescendo diffusion and reordered equations
矩模型的最优预测:渐强扩散和重新排序的方程
- DOI:
10.1007/s00161-009-0111-7 - 发表时间:
2009 - 期刊:
- 影响因子:2.6
- 作者:
Benjamin Seibold;M. Frank - 通讯作者:
M. Frank
The Flow Equation Approach To Many Particle Systems Springer Tracts In Modern Physics 217 Band 217 By Stefan Kehrein
许多粒子系统的流动方程方法 现代物理学 Springer Tracts 217 Band 217 作者:Stefan Kehrein
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Benjamin Seibold - 通讯作者:
Benjamin Seibold
Optimal Prediction in Molecular Dynamics
分子动力学中的最优预测
- DOI:
10.1515/156939604323091199 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Benjamin Seibold - 通讯作者:
Benjamin Seibold
Benjamin Seibold的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Seibold', 18)}}的其他基金
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
- 批准号:
2309728 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Flexible and Scalable Moment Method Simulations for Radiation Transport and Nuclear Medicine Applications
适用于辐射传输和核医学应用的灵活且可扩展的矩量法模拟
- 批准号:
1952878 - 财政年份:2020
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
Collaborative Research: Euler-Based Time-Stepping with Optimal Stability and Accuracy for Partial Differential Equations
协作研究:具有最佳稳定性和精度的偏微分方程基于欧拉的时间步进
- 批准号:
2012271 - 财政年份:2020
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
- 批准号:
1446690 - 财政年份:2015
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
A computational framework for atherosclerotic plaque growth simulations
动脉粥样硬化斑块生长模拟的计算框架
- 批准号:
1318641 - 财政年份:2013
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
Collaborative Research: Gradient-augmented level set methods and jet schemes
合作研究:梯度增强水平集方法和喷射方案
- 批准号:
1318709 - 财政年份:2013
- 资助金额:
$ 17.66万 - 项目类别:
Continuing Grant
Collaborative Research: Numerical approaches for incompressible viscous flows with high order accuracy up to the boundary
合作研究:不可压缩粘性流的数值方法,具有高阶精度直至边界
- 批准号:
1115269 - 财政年份:2011
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Collaborative Research: Phantom traffic jams, continuum modeling, and connections with detonation wave theory
合作研究:虚拟交通堵塞、连续介质建模以及与爆震波理论的联系
- 批准号:
1007899 - 财政年份:2010
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Understanding and overcoming the impediments to high-risk, high-return science
合作研究:理解并克服高风险、高回报科学的障碍
- 批准号:
2346644 - 财政年份:2024
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and overcoming the impediments to high-risk, high-return science
合作研究:理解并克服高风险、高回报科学的障碍
- 批准号:
2346645 - 财政年份:2024
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Collaborative Research: Overcoming Isolation and Scholarly Devaluation by Bolstering the Collective Agency of Black Discipline-Based Education Researchers
合作研究:通过支持黑人学科教育研究人员的集体机构来克服孤立和学术贬值
- 批准号:
2315023 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
Collaborative Research: Overcoming Isolation and Scholarly Devaluation by Bolstering the Collective Agency of Black Discipline-Based Education Researchers
合作研究:通过支持黑人学科教育研究人员的集体机构来克服孤立和学术贬值
- 批准号:
2315024 - 财政年份:2023
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
- 批准号:
2003867 - 财政年份:2020
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
D3SC: Collaborative Research: Overcoming Challenges in Classification Near the Limit of Determination
D3SC:协作研究:克服接近确定极限的分类挑战
- 批准号:
2003839 - 财政年份:2020
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Overcoming Propagation Challenges at Millimeter-Wave Frequencies via Reconfigurable Antennas
EARS:协作研究:通过可重构天线克服毫米波频率的传播挑战
- 批准号:
2029973 - 财政年份:2020
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Collaborative Research: Understanding and Overcoming Biases in STEM Education using Machine Learning
EAGER:AI-DCL:协作研究:利用机器学习理解和克服 STEM 教育中的偏见
- 批准号:
1926925 - 财政年份:2019
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Collaborative Research: Understanding and Overcoming Biases in STEM Education Using Machine Learning
EAGER:AI-DCL:协作研究:利用机器学习理解和克服 STEM 教育中的偏见
- 批准号:
1926930 - 财政年份:2019
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant
EAGER AI-DCL Collaborative Research: Understanding and Overcoming Biases in STEM Education Using Machine Learning
EAGER AI-DCL 合作研究:利用机器学习理解和克服 STEM 教育中的偏见
- 批准号:
1926929 - 财政年份:2019
- 资助金额:
$ 17.66万 - 项目类别:
Standard Grant