Fundamental Mathematical and Experimental Fluid Dynamics
基础数学和实验流体动力学
基本信息
- 批准号:1009750
- 负责人:
- 金额:$ 31.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project focuses on fundamental fluid phenomena explored through a combination of mathematical hydrodynamic theory and experiment. The majority of this theoretical and experimental research will take place in and around the new UNC Interdisciplinary fluids laboratory, which opened in June 2007. This project will involve 2 mathematics faculty, 1 graduate student, and 1 undergraduate student to perform experimental and theoretical research designed to better understand mixing, entrainment, and flow properties of stratified and/or viscous systems. Research will include assessing the regularization of Stokes flow divergences through density stratifications, finite time enhanced diffusion with rigid boundary conditions, the hydrodynamics of spheres in the presence of time varying shear layers, and the analysis of singular non-self adjoint differential eigenvalue problems. Applications of these techniques to the natural sciences will be explored. The environment in which we live and breathe is a complex coupled fluid system whose dynamics possess phenomena occurring on a vast range of space and time scales. From the smallest cilia in the lung which provide a hydrodynamic defense mechanism against inhaled contaminants to the atmosphere, oceans, and our climate, we interact directly with our fluid environment. The project seeks to provide both improved scientific understanding, and, along the way, new opportunities for research and educational experiences for undergraduate and graduate students of the natural sciences and will have an outreach to middle and high school students through tours and summer research internships. In particular, this project is focused upon research in fundamental fluid dynamics with emphasis on improved understanding of the interaction between immersed bodies moving in stratified fluids in different environments such as in atmospheres and oceans and in biological systems. Specific examples of such behavior include the settling of "marine snow" in the ocean which is responsible for sequestering carbon dioxide from the atmosphere, as well as the formation of underwater trapped oil plumes such as those occurring in the Deepwater Horizon Gulf of Mexico oil spill.
该研究项目的重点是通过数学流体动力学理论和实验相结合探索基本流体现象。 这项理论和实验研究的大部分将在2007年6月开放的新的跨学科流体实验室内和周围进行。 该项目将涉及2名数学教师,1名研究生和1名本科生进行实验和理论研究,旨在更好地了解分层和/或粘性系统的混合,夹带和流动特性。研究将包括评估通过密度分层,有限时间增强扩散刚性边界条件,在时变剪切层的存在下的球体的流体动力学,和奇异非自伴微分特征值问题的分析斯托克斯流发散的正则化。 将探讨这些技术在自然科学中的应用。 我们生活和呼吸的环境是一个复杂的耦合流体系统,其动力学具有在广阔的空间和时间尺度上发生的现象。 从肺中最小的纤毛,它提供了一个流体动力学防御机制,以防止吸入污染物到大气,海洋和我们的气候,我们直接与我们的流体环境相互作用。 该项目力求提高科学认识,并在此过程中沿着为自然科学专业的本科生和研究生提供新的研究和教育机会,并将通过图尔斯和暑期研究实习向初中和高中学生推广。 特别是,该项目侧重于基础流体动力学的研究,重点是提高对在大气和海洋以及生物系统等不同环境中分层流体中移动的浸没体之间相互作用的理解。 这种行为的具体例子包括海洋中的“海洋雪”沉降,这是从大气中隔离二氧化碳的原因,以及形成水下被困的油羽,如墨西哥湾深水地平线石油泄漏事件中发生的油羽。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard McLaughlin其他文献
Mucoepidermoid carcinoma of the parotid as a second malignant neoplasm in children
腮腺粘液表皮样癌是儿童第二位恶性肿瘤
- DOI:
10.1002/1097-0142(19891115)64:10<2174::aid-cncr2820641032>3.0.co;2-f - 发表时间:
1989 - 期刊:
- 影响因子:6.2
- 作者:
T. Loy;Richard McLaughlin;L. Odom;L. Dehner - 通讯作者:
L. Dehner
Abstracts of papers presented at the 63rd annual PAA meeting
- DOI:
10.1007/bf02876188 - 发表时间:
1979-10-01 - 期刊:
- 影响因子:1.800
- 作者:
Jose L. Rueda;Donald Berrios;W. R. Amoros;H. A. Mendoza;Jose Gil Archuleta;Gene D. Easton;C. R. Brown;Doug Bruce;Elsa Camadro;S. J. Peloquin;J. R. Davis;W. B. Jones;Curtis H. Dearborn;S. H. Deboer;Robert B. Dwelle;Gale E. Kleinkopf;R. K. Steinhorst;J. J. Pavek;Gene D. Easton;Nelson Estrada;Elmer E. Ewing;Anne Hedges;Joseph B. Sieczka;Jack A. Freeman;R. W. Goth;R. E. Webb;D. C. Graham;David F. Hammond;Hauman Zozimo;M. R. Henninger;J. W. Patterson;L. K. Hiller;D. C. Koller;R. W. VanDenburgh;Don Y. Huang;Clarence A. Ryan;Barry G. Swanson;Gary M. Hyde;R. E. Thornton;Robert Kunkel;Masaru Iwanaga;Michael T. Jackson;L. C. Gonzalez;C. A. Jaworski;R. W. Goth;S. C. Phatak;Kelman Arthur;Judy Kintner;J. W. Kloepper;M. N. Schroth;A. R. Weinhold;T. Bowman;Ray Kuenemann;R. Kunkel;N. M. Holstad;D. C. Mitchell;T. S. Russell;J. A. Landeo;R. E. Hanneman;M. B. Lazin;Humberto A. Mendoza;I. J. Sung;E. E. Ewing;J. B. Sieczka;David Levy;Mark W. Martin;Richard McLaughlin;F. J. Munoz;R. L. Plaisted;K. C. Ng;M. L. Weaver;L. W. Nielsen;R. B. O’keefe;S. F. Osman;R. M. Zacharius;V. Otazu;R. T. Zink;Gary A. Secor;Eufemio T. Rasco;Robert L. Plaisted;A. F. Reeves;J. H. Hunter;Craig Ross;R. Kunkel;W. Gardner;R. C. Rowe;R. F. Sacher;W. M. Iritani;Paul Sand;F. Aphis;L. L. Sanford;T. L. Ladd;S. L. Sinden;L. L. Sanford;S. F. Osman;Slack Steven;S. A. Slack;H. A. Sanford;F. E. Manzer;Walter C. Sparks;Dwight G. Stiles;G. C. C. Tai;T. R. Tarn;A. F. Tarhan;J. N. Cash;P. Markakis;Robert E. Thornton;R. W. Vandenburgh;L. K. Hiller;M. L. Vitosh;G. W. Bird;R. W. Chase;J. W. Noling;H. Vruggink;Geesteranus;H. P. Maas;M. L. Weaver;K. C. Ng;G. G. Weis;E. K. Wade;J. O. Baldock;Arthur L. Wells;Milton Workman;Arthur Cameron;James Twomey;Wen-Wei Yu;B. G. Swanson;R. T. Zink - 通讯作者:
R. T. Zink
Richard McLaughlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard McLaughlin', 18)}}的其他基金
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
- 批准号:
2308063 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
Collaborative Research: Self-Assembly and Aggregate Formation in Stratified Fluids
合作研究:分层流体中的自组装和聚集体形成
- 批准号:
1910824 - 财政年份:2019
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
EMSW21-RTG: Laboratory and Mathematical Fluid Dynamics: Experiments, Computation and Modeling
EMSW21-RTG:实验室和数学流体动力学:实验、计算和建模
- 批准号:
0943851 - 财政年份:2010
- 资助金额:
$ 31.9万 - 项目类别:
Continuing Grant
"CMG Research: Delayed Settling of Marine Snow Through Density Transitions and Consequences for the Ocean Carbon Cycle"
“CMG 研究:通过密度转变延迟海洋雪沉降以及对海洋碳循环的影响”
- 批准号:
1025523 - 财政年份:2010
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
RAPID: Multi-phase Buoyant Plumes in Stratified Water Study relevant to Oil Spill Implications for the Gulf oil spill distribution
RAPID:与溢油相关的分层水中的多相浮力羽流研究对海湾溢油分布的影响
- 批准号:
1045653 - 财政年份:2010
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
"EMSW21-RTG": Laboratory and Mathematical Fluid Dynamics: Experiments, Computation, and Modeling
“EMSW21-RTG”:实验室和数学流体动力学:实验、计算和建模
- 批准号:
0502266 - 财政年份:2005
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
Collaborative Research: CMG: Multi-Scaled Dependent, Heavy Tailed Distributions in Geophysical Flow: Physical Mechanisms and Data Assimilation
合作研究:CMG:地球物理流中的多尺度相关重尾分布:物理机制和数据同化
- 批准号:
0327906 - 财政年份:2003
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
Research and Education in Multi-Scale Fluid Dynamics
多尺度流体动力学研究与教育
- 批准号:
0308687 - 财政年份:2003
- 资助金额:
$ 31.9万 - 项目类别:
Continuing Grant
Mathematical Fluid Dynamics and Education Turbulent Transport, Combustion, and Compressible Convection
数学流体动力学和教育湍流传输、燃烧和可压缩对流
- 批准号:
9996181 - 财政年份:1998
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
Mathematical Fluid Dynamics and Education Turbulent Transport, Combustion, and Compressible Convection
数学流体动力学和教育湍流传输、燃烧和可压缩对流
- 批准号:
9701942 - 财政年份:1997
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
- 批准号:
2339032 - 财政年份:2024
- 资助金额:
$ 31.9万 - 项目类别:
Continuing Grant
Optimising the treatment of inflammation by targeting the phosphorylation of tristetraprolin: a combined experimental and mathematical modelling appro
通过靶向三四脯氨酸磷酸化优化炎症治疗:实验和数学建模相结合的方法
- 批准号:
2889903 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Studentship
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
- 批准号:
2246724 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Continuing Grant
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
- 批准号:
2246723 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Continuing Grant
Extending experimental evolutionary game theory in cancer in vivo to enable clinical translation: integrating spatio-temporal dynamics using mathematical modeling
扩展癌症体内实验进化博弈论以实现临床转化:使用数学建模整合时空动力学
- 批准号:
10662098 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Collaborative Research: Mathematical and experimental analysis of the interaction between competitors and a shared predator - from patches to landscapes
合作研究:对竞争对手和共同捕食者之间的相互作用进行数学和实验分析 - 从斑块到景观
- 批准号:
2246725 - 财政年份:2023
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
- 批准号:
2150947 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
Thermochemical energy storage systems: mathematical modelling and experimental evaluation of materials and prototype systems performance
热化学储能系统:材料和原型系统性能的数学建模和实验评估
- 批准号:
2687658 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别:
Studentship
Collaborative Research: Mathematical and Experimental Analysis of Competitive and Predator-Prey Models: Conditional Dispersal on Patches to Landscapes
合作研究:竞争模型和捕食者-被捕食模型的数学和实验分析:景观斑块的条件扩散
- 批准号:
2150945 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别:
Standard Grant
Integrative mathematical, computational, and experimental approach to study biological systems
研究生物系统的综合数学、计算和实验方法
- 批准号:
RGPIN-2021-03472 - 财政年份:2022
- 资助金额:
$ 31.9万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




