Collaborative Research: Self-Assembly and Aggregate Formation in Stratified Fluids
合作研究:分层流体中的自组装和聚集体形成
基本信息
- 批准号:1910824
- 负责人:
- 金额:$ 25.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The atmospheres, lakes, and oceans of our world typically involve density variability, with layers of lighter fluid sitting on top of heavier fluid. In this project, we are exploring a novel mechanism we have discovered through which particles suspended within such layered systems are seen to attract each other and self-assemble, forming large disc like clusters. The mechanism for this attraction involves fluid flows which the particles themselves create from being in a layered fluid. Such clusters occur ubiquitously in lakes and oceans, where they can provide food sources for a variety of organisms, or result in concentrations of polluting particles. The origins of these clusters may well lie within this new aggregate formation mechanism under exploration within this award. Graduate students will be involved in the project. Specifically, the award will undertake a combined theoretical, numerical, and experimental investigation of a newly discovered hydrodynamic interaction between particles in a stratified ambient environment. Recent experimental work by the PIs at the UNC Joint Fluids Lab have demonstrated that passive particles suspended in a density-stratified environment interact through self-induced flows which can result in approaching one and another over time until coming into contact. Collections of many particles tend to aggregate and self-assemble into large-scale 2D structures due to this newly identified attraction mechanism. The project aims to characterize this newly-identified interaction effect in nature for the first time, through novel asymptotic methods, numerical simulations, and careful experimentation. The research will explore the complex interplay between diffusion, advection, and geometry (through physical boundary conditions) in inducing new collective phenomena. This requires developing novel computational, asymptotic, and experimental methods for extracting quantitative predictions from the parent Navier-Stokes equations coupled through the viscous stress tensor to particles suspended in stratified environments. The new asymptotic methods developed as part of this proposal will also prove useful for a wider range of problems in fluid dynamics and potential theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们世界的大气、湖泊和海洋通常涉及密度变化,较轻的流体层位于较重的流体之上。 在这个项目中,我们正在探索一种新的机制,通过这种机制,悬浮在这种分层系统中的粒子被认为是相互吸引和自组装,形成大的圆盘状集群。 这种吸引力的机制涉及颗粒本身在分层流体中产生的流体流动。 这种集群在湖泊和海洋中无处不在,它们可以为各种生物提供食物来源,或导致污染颗粒的集中。这些集群的起源很可能在于这个新的聚集体形成机制,在这个奖项的探索。研究生将参与该项目。具体而言,该奖项将对分层环境中颗粒之间新发现的流体动力学相互作用进行理论,数值和实验研究。最近的实验工作由PI在联合流体实验室已经证明,被动颗粒悬浮在密度分层的环境中通过自诱导流相互作用,这可能导致接近一个和另一个随着时间的推移,直到接触。由于这种新发现的吸引机制,许多粒子的集合倾向于聚集和自组装成大规模的2D结构。该项目旨在通过新颖的渐近方法、数值模拟和仔细的实验,首次描述这种新发现的自然界相互作用效应。 该研究将探索扩散,平流和几何形状(通过物理边界条件)之间的复杂相互作用,以诱导新的集体现象。这需要开发新的计算,渐近和实验方法提取定量预测的父Navier-Stokes方程耦合通过粘性应力张量悬浮在分层环境中的颗粒。作为该提案的一部分开发的新的渐近方法也将被证明对流体动力学和势理论中更广泛的问题有用。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ergodicity and invariant measures for a diffusing passive scalar advected by a random channel shear flow and the connection between the Kraichnan–Majda model and Taylor–Aris Dispersion
随机通道剪切流平流扩散被动标量的遍历性和不变测度以及 Kraichnan-Majda 模型和 Taylor-Aris 色散之间的联系
- DOI:10.1016/j.physd.2021.133118
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ding, Lingyun;McLaughlin, Richard M.
- 通讯作者:McLaughlin, Richard M.
A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids
- DOI:10.1038/s41467-019-13643-y
- 发表时间:2019-12-20
- 期刊:
- 影响因子:16.6
- 作者:Camassa, Roberto;Harris, Daniel M.;McLaughlin, Richard M.
- 通讯作者:McLaughlin, Richard M.
Enhanced diffusivity and skewness of a diffusing tracer in the presence of an oscillating wall
在存在振荡壁的情况下增强扩散示踪剂的扩散率和偏度
- DOI:10.1007/s40687-021-00257-4
- 发表时间:2021
- 期刊:
- 影响因子:1.2
- 作者:Ding, Lingyun;Hunt, Robert;McLaughlin, Richard M.;Woodie, Hunter
- 通讯作者:Woodie, Hunter
Dispersion induced by unsteady diffusion-driven flow in a parallel-plate channel
- DOI:10.1103/physrevfluids.8.084501
- 发表时间:2023-04
- 期刊:
- 影响因子:2.7
- 作者:Lingyun Ding;R. McLaughlin
- 通讯作者:Lingyun Ding;R. McLaughlin
Self-induced flow over a cylinder in a stratified fluid
分层流体中圆柱体上的自感流
- DOI:10.1017/jfm.2023.301
- 发表时间:2023
- 期刊:
- 影响因子:3.7
- 作者:Thomas, Jim;Camassa, Roberto
- 通讯作者:Camassa, Roberto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard McLaughlin其他文献
Mucoepidermoid carcinoma of the parotid as a second malignant neoplasm in children
腮腺粘液表皮样癌是儿童第二位恶性肿瘤
- DOI:
10.1002/1097-0142(19891115)64:10<2174::aid-cncr2820641032>3.0.co;2-f - 发表时间:
1989 - 期刊:
- 影响因子:6.2
- 作者:
T. Loy;Richard McLaughlin;L. Odom;L. Dehner - 通讯作者:
L. Dehner
Abstracts of papers presented at the 63rd annual PAA meeting
- DOI:
10.1007/bf02876188 - 发表时间:
1979-10-01 - 期刊:
- 影响因子:1.800
- 作者:
Jose L. Rueda;Donald Berrios;W. R. Amoros;H. A. Mendoza;Jose Gil Archuleta;Gene D. Easton;C. R. Brown;Doug Bruce;Elsa Camadro;S. J. Peloquin;J. R. Davis;W. B. Jones;Curtis H. Dearborn;S. H. Deboer;Robert B. Dwelle;Gale E. Kleinkopf;R. K. Steinhorst;J. J. Pavek;Gene D. Easton;Nelson Estrada;Elmer E. Ewing;Anne Hedges;Joseph B. Sieczka;Jack A. Freeman;R. W. Goth;R. E. Webb;D. C. Graham;David F. Hammond;Hauman Zozimo;M. R. Henninger;J. W. Patterson;L. K. Hiller;D. C. Koller;R. W. VanDenburgh;Don Y. Huang;Clarence A. Ryan;Barry G. Swanson;Gary M. Hyde;R. E. Thornton;Robert Kunkel;Masaru Iwanaga;Michael T. Jackson;L. C. Gonzalez;C. A. Jaworski;R. W. Goth;S. C. Phatak;Kelman Arthur;Judy Kintner;J. W. Kloepper;M. N. Schroth;A. R. Weinhold;T. Bowman;Ray Kuenemann;R. Kunkel;N. M. Holstad;D. C. Mitchell;T. S. Russell;J. A. Landeo;R. E. Hanneman;M. B. Lazin;Humberto A. Mendoza;I. J. Sung;E. E. Ewing;J. B. Sieczka;David Levy;Mark W. Martin;Richard McLaughlin;F. J. Munoz;R. L. Plaisted;K. C. Ng;M. L. Weaver;L. W. Nielsen;R. B. O’keefe;S. F. Osman;R. M. Zacharius;V. Otazu;R. T. Zink;Gary A. Secor;Eufemio T. Rasco;Robert L. Plaisted;A. F. Reeves;J. H. Hunter;Craig Ross;R. Kunkel;W. Gardner;R. C. Rowe;R. F. Sacher;W. M. Iritani;Paul Sand;F. Aphis;L. L. Sanford;T. L. Ladd;S. L. Sinden;L. L. Sanford;S. F. Osman;Slack Steven;S. A. Slack;H. A. Sanford;F. E. Manzer;Walter C. Sparks;Dwight G. Stiles;G. C. C. Tai;T. R. Tarn;A. F. Tarhan;J. N. Cash;P. Markakis;Robert E. Thornton;R. W. Vandenburgh;L. K. Hiller;M. L. Vitosh;G. W. Bird;R. W. Chase;J. W. Noling;H. Vruggink;Geesteranus;H. P. Maas;M. L. Weaver;K. C. Ng;G. G. Weis;E. K. Wade;J. O. Baldock;Arthur L. Wells;Milton Workman;Arthur Cameron;James Twomey;Wen-Wei Yu;B. G. Swanson;R. T. Zink - 通讯作者:
R. T. Zink
Richard McLaughlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard McLaughlin', 18)}}的其他基金
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
- 批准号:
2308063 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
EMSW21-RTG: Laboratory and Mathematical Fluid Dynamics: Experiments, Computation and Modeling
EMSW21-RTG:实验室和数学流体动力学:实验、计算和建模
- 批准号:
0943851 - 财政年份:2010
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
Fundamental Mathematical and Experimental Fluid Dynamics
基础数学和实验流体动力学
- 批准号:
1009750 - 财政年份:2010
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
"CMG Research: Delayed Settling of Marine Snow Through Density Transitions and Consequences for the Ocean Carbon Cycle"
“CMG 研究:通过密度转变延迟海洋雪沉降以及对海洋碳循环的影响”
- 批准号:
1025523 - 财政年份:2010
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
RAPID: Multi-phase Buoyant Plumes in Stratified Water Study relevant to Oil Spill Implications for the Gulf oil spill distribution
RAPID:与溢油相关的分层水中的多相浮力羽流研究对海湾溢油分布的影响
- 批准号:
1045653 - 财政年份:2010
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
"EMSW21-RTG": Laboratory and Mathematical Fluid Dynamics: Experiments, Computation, and Modeling
“EMSW21-RTG”:实验室和数学流体动力学:实验、计算和建模
- 批准号:
0502266 - 财政年份:2005
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Collaborative Research: CMG: Multi-Scaled Dependent, Heavy Tailed Distributions in Geophysical Flow: Physical Mechanisms and Data Assimilation
合作研究:CMG:地球物理流中的多尺度相关重尾分布:物理机制和数据同化
- 批准号:
0327906 - 财政年份:2003
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Research and Education in Multi-Scale Fluid Dynamics
多尺度流体动力学研究与教育
- 批准号:
0308687 - 财政年份:2003
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
Mathematical Fluid Dynamics and Education Turbulent Transport, Combustion, and Compressible Convection
数学流体动力学和教育湍流传输、燃烧和可压缩对流
- 批准号:
9996181 - 财政年份:1998
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Mathematical Fluid Dynamics and Education Turbulent Transport, Combustion, and Compressible Convection
数学流体动力学和教育湍流传输、燃烧和可压缩对流
- 批准号:
9701942 - 财政年份:1997
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329674 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Collaborative Research: Self-powered Electrochemical Actuators toward Untethered Soft Mobile Robots
合作研究:用于无束缚软移动机器人的自供电电化学执行器
- 批准号:
2329675 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Collaborative Research: Integrating Nanoparticle Self-assembly into Laser/Powder-based Additive Manufacturing of Multimodal Metallic Materials
合作研究:将纳米粒子自组装集成到多模态金属材料的激光/粉末增材制造中
- 批准号:
2231077 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Self-Driving Continuous Fuzzing
协作研究:SaTC:核心:小型:自驱动连续模糊测试
- 批准号:
2247880 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Continuing Grant
Collaborative Research: Using a Self-Guided Online Intervention to Address Student Fear of Negative Evaluation in Active Learning Undergraduate Biology Courses
合作研究:利用自我引导的在线干预来解决学生在主动学习本科生物学课程中对负面评价的恐惧
- 批准号:
2409880 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant
Collaborative Research: DESC: Type I: A User-Interactive Approach to Water Management for Sustainable Data Centers: From Water Efficiency to Self-Sufficiency
合作研究:DESC:类型 I:可持续数据中心水资源管理的用户交互方法:从用水效率到自给自足
- 批准号:
2324916 - 财政年份:2023
- 资助金额:
$ 25.4万 - 项目类别:
Standard Grant