EMSW21-RTG: Laboratory and Mathematical Fluid Dynamics: Experiments, Computation and Modeling

EMSW21-RTG:实验室和数学流体动力学:实验、计算和建模

基本信息

项目摘要

This Research Training project involves two postdoctoral fellows for three years, 3 graduate students for 4 years and 10 undergraduates for 5 years which will perform research in experimental and theoretical fluid dynamics occurring in and around the University of North Carolina Joint Fluids Laboratory. Specifically, the research and training will be focused upon the complicated interaction between solid bodies and fluids arising in a variety of biologically and environmentally relevant scenarios including systems with strong and sharp density stratification such as occurring in the oceans and atmosphere as well as in highly viscous systems relevant to microbiology. The effort brings together new experimental phenomena with quantified mathematical modeling.Fluid dynamics is central to understanding the behavior of many physical systems on a wide range of length and time scales spanning our atmosphere and oceans down to the smallest swimming micro-organisms. In particular, understanding how a body moves fluid and in turn how the fluid can impact a body is fundamental to understanding how our environment works, which is necessary to even begin to assess human impacts on climate. Our the large scales, the oceans and atmospheres are complicated fluid systems possessing strong density variations, and the associated phenomena are complex and central to building a more quantified understanding of climate. On smaller scales, biological systems are bathed in fluids with varying viscosities which are moved via the motion of small hair-like structures called cilia. Developing quantified analytical and computational models to predict these dynamics has implications for improved understanding of lung function and disease such as Cystic Fibrosis. This research training grant is dedicated towards improved experimental and theoretical understanding of the interaction between solid bodies and complicated fluid systems.
本研究培训项目包括2名博士后(3年),3名研究生(4年)和10名本科生(5年),他们将在北卡罗来纳大学联合流体实验室及其周边地区进行实验和理论流体动力学研究。具体而言,研究和培训将集中在各种生物和环境相关场景中产生的固体和流体之间复杂的相互作用,包括在海洋和大气中发生的强烈而尖锐的密度分层系统以及与微生物学相关的高粘性系统。这项工作将新的实验现象与量化的数学模型结合在一起。流体动力学是理解许多物理系统在广泛的长度和时间尺度上的行为的核心,从我们的大气和海洋到最小的游泳微生物。特别是,了解身体如何移动流体以及流体如何影响身体是理解我们的环境如何运作的基础,这对于开始评估人类对气候的影响是必要的。在大尺度上,海洋和大气是复杂的流体系统,具有强烈的密度变化,相关的现象是复杂的,对建立更量化的气候理解至关重要。在更小的尺度上,生物系统沐浴在不同粘度的液体中,这些液体通过被称为纤毛的小毛发状结构的运动而移动。开发量化的分析和计算模型来预测这些动态,对于提高对肺功能和囊性纤维化等疾病的理解具有重要意义。这项研究培训基金致力于提高对固体和复杂流体系统之间相互作用的实验和理论理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard McLaughlin其他文献

Mucoepidermoid carcinoma of the parotid as a second malignant neoplasm in children
腮腺粘液表皮样癌是儿童第二位恶性肿瘤
  • DOI:
    10.1002/1097-0142(19891115)64:10<2174::aid-cncr2820641032>3.0.co;2-f
  • 发表时间:
    1989
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    T. Loy;Richard McLaughlin;L. Odom;L. Dehner
  • 通讯作者:
    L. Dehner
Abstracts of papers presented at the 63rd annual PAA meeting
  • DOI:
    10.1007/bf02876188
  • 发表时间:
    1979-10-01
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Jose L. Rueda;Donald Berrios;W. R. Amoros;H. A. Mendoza;Jose Gil Archuleta;Gene D. Easton;C. R. Brown;Doug Bruce;Elsa Camadro;S. J. Peloquin;J. R. Davis;W. B. Jones;Curtis H. Dearborn;S. H. Deboer;Robert B. Dwelle;Gale E. Kleinkopf;R. K. Steinhorst;J. J. Pavek;Gene D. Easton;Nelson Estrada;Elmer E. Ewing;Anne Hedges;Joseph B. Sieczka;Jack A. Freeman;R. W. Goth;R. E. Webb;D. C. Graham;David F. Hammond;Hauman Zozimo;M. R. Henninger;J. W. Patterson;L. K. Hiller;D. C. Koller;R. W. VanDenburgh;Don Y. Huang;Clarence A. Ryan;Barry G. Swanson;Gary M. Hyde;R. E. Thornton;Robert Kunkel;Masaru Iwanaga;Michael T. Jackson;L. C. Gonzalez;C. A. Jaworski;R. W. Goth;S. C. Phatak;Kelman Arthur;Judy Kintner;J. W. Kloepper;M. N. Schroth;A. R. Weinhold;T. Bowman;Ray Kuenemann;R. Kunkel;N. M. Holstad;D. C. Mitchell;T. S. Russell;J. A. Landeo;R. E. Hanneman;M. B. Lazin;Humberto A. Mendoza;I. J. Sung;E. E. Ewing;J. B. Sieczka;David Levy;Mark W. Martin;Richard McLaughlin;F. J. Munoz;R. L. Plaisted;K. C. Ng;M. L. Weaver;L. W. Nielsen;R. B. O’keefe;S. F. Osman;R. M. Zacharius;V. Otazu;R. T. Zink;Gary A. Secor;Eufemio T. Rasco;Robert L. Plaisted;A. F. Reeves;J. H. Hunter;Craig Ross;R. Kunkel;W. Gardner;R. C. Rowe;R. F. Sacher;W. M. Iritani;Paul Sand;F. Aphis;L. L. Sanford;T. L. Ladd;S. L. Sinden;L. L. Sanford;S. F. Osman;Slack Steven;S. A. Slack;H. A. Sanford;F. E. Manzer;Walter C. Sparks;Dwight G. Stiles;G. C. C. Tai;T. R. Tarn;A. F. Tarhan;J. N. Cash;P. Markakis;Robert E. Thornton;R. W. Vandenburgh;L. K. Hiller;M. L. Vitosh;G. W. Bird;R. W. Chase;J. W. Noling;H. Vruggink;Geesteranus;H. P. Maas;M. L. Weaver;K. C. Ng;G. G. Weis;E. K. Wade;J. O. Baldock;Arthur L. Wells;Milton Workman;Arthur Cameron;James Twomey;Wen-Wei Yu;B. G. Swanson;R. T. Zink
  • 通讯作者:
    R. T. Zink

Richard McLaughlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard McLaughlin', 18)}}的其他基金

CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
  • 批准号:
    2308063
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-Assembly and Aggregate Formation in Stratified Fluids
合作研究:分层流体中的自组装和聚集体形成
  • 批准号:
    1910824
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Fundamental Mathematical and Experimental Fluid Dynamics
基础数学和实验流体动力学
  • 批准号:
    1009750
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
"CMG Research: Delayed Settling of Marine Snow Through Density Transitions and Consequences for the Ocean Carbon Cycle"
“CMG 研究:通过密度转变延迟海洋雪沉降以及对海洋碳循环的影响”
  • 批准号:
    1025523
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
RAPID: Multi-phase Buoyant Plumes in Stratified Water Study relevant to Oil Spill Implications for the Gulf oil spill distribution
RAPID:与溢油相关的分层水中的多相浮力羽流研究对海湾溢油分布的影响
  • 批准号:
    1045653
  • 财政年份:
    2010
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
"EMSW21-RTG": Laboratory and Mathematical Fluid Dynamics: Experiments, Computation, and Modeling
“EMSW21-RTG”:实验室和数学流体动力学:实验、计算和建模
  • 批准号:
    0502266
  • 财政年份:
    2005
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CMG: Multi-Scaled Dependent, Heavy Tailed Distributions in Geophysical Flow: Physical Mechanisms and Data Assimilation
合作研究:CMG:地球物理流中的多尺度相关重尾分布:物理机制和数据同化
  • 批准号:
    0327906
  • 财政年份:
    2003
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Research and Education in Multi-Scale Fluid Dynamics
多尺度流体动力学研究与教育
  • 批准号:
    0308687
  • 财政年份:
    2003
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Mathematical Fluid Dynamics and Education Turbulent Transport, Combustion, and Compressible Convection
数学流体动力学和教育湍流传输、燃烧和可压缩对流
  • 批准号:
    9996181
  • 财政年份:
    1998
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Mathematical Fluid Dynamics and Education Turbulent Transport, Combustion, and Compressible Convection
数学流体动力学和教育湍流传输、燃烧和可压缩对流
  • 批准号:
    9701942
  • 财政年份:
    1997
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似海外基金

RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
  • 批准号:
    2342225
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
  • 批准号:
    2342349
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
  • 批准号:
    2230900
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RTG: Vertically Integrated Interdisciplinary Training in Mathematics for Human Health
RTG:人类健康数学垂直整合跨学科培训
  • 批准号:
    2230790
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RTG: Research Training Group in Logic and its Application
RTG:逻辑及其应用研究培训小组
  • 批准号:
    2231414
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
  • 批准号:
    2231533
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RTG: Numerical Mathematics and Scientific Computing
RTG:数值数学和科学计算
  • 批准号:
    2231482
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RTG: Topology, Representation Theory, and Mathematical Physics at Louisiana State University
RTG:路易斯安那州立大学拓扑学、表示论和数学物理
  • 批准号:
    2231492
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
RTG: Linked via L-functions: training versatile researchers across number theory
RTG:通过 L 函数链接:跨数论培训多才多艺的研究人员
  • 批准号:
    2231514
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了