"EMSW21-RTG": Laboratory and Mathematical Fluid Dynamics: Experiments, Computation, and Modeling
“EMSW21-RTG”:实验室和数学流体动力学:实验、计算和建模
基本信息
- 批准号:0502266
- 负责人:
- 金额:$ 172.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluids are everywhere, in the air we breathe, and in the water we drink. As living organisms, fluids provide the environment in which we live, and the understanding of fluid motion (from the smallest micro-scale organisms to the largest planetary-scale storms which stir our atmosphere) is vital to understanding how living organisms function.The understanding of fluid dynamics is both an experimental and mathematical endeavor. This research training grant will facilitate training of a full spectrum of students (undergraduates, graduates, and post-graduates) to work at the interface of experimental and theoretical science in research focused upon discovering new fluid phenomena through laboratory experiments, and the development of mathematical theory for better predicting these new phenomena. The training provided will prepare future mathematical scientists to engage directly with experimentalists in the area of biological and environmental fluid dynamics crucial to understanding how we interact with our environment on a wide range of spatio-temporal scales. The trainees will be developed into true interdisciplinary mathematical scientists with expertise in both mathematical technique and experimental laboratory method. The experimental fluid phenomena studied in the UNC fluid dynamics laboratories housed in the Mathematics and Physics departments will be the focus of a uniformly balanced research approach which will bring together new experiments and new mathematical (theoretical and computational) predictions to better our understanding of fluid phenomena in nature.The specific focus will be upon two different experimental regimes of micro-fluidic transport phenomena (directly relevant to muco-ciliary transport in the lung), and of laboratory-scale stratified fluid phenomena (directly relevant to mixing in the atmosphere and oceans). Through a combination of a structured advising system (with 8 mathematics and 1 physics faculty advisors), rotations through the involved laboratories, regular group meetings, and a modified course of study, this RTG grant will develop a new generation of mathematical scientists prepared with the necessary tools to effectively work on truly interdisciplinary science.
液体无处不在,在我们呼吸的空气中,在我们喝的水中。作为生物体,流体提供了我们生存的环境,对流体运动的理解(从最小的微尺度生物体到搅动大气的最大的行星尺度风暴)对于理解生物体如何运作至关重要。理解流体动力学是一项实验和数学上的努力。本研究训练补助金将协助培养各类学生(本科生、研究生和研究生)从事实验和理论科学的交叉研究,重点是通过实验室实验发现新的流体现象,并发展数学理论以更好地预测这些新现象。所提供的培训将为未来的数学科学家做好准备,使他们能够直接与生物和环境流体动力学领域的实验员接触,这对于理解我们如何在广泛的时空尺度上与环境相互作用至关重要。学员将被培养成为真正的跨学科数学科学家,在数学技术和实验实验室方法方面都具有专业知识。在北卡罗来纳大学数学系和物理系的流体动力学实验室中研究的实验流体现象将成为统一平衡研究方法的重点,该方法将汇集新的实验和新的数学(理论和计算)预测,以更好地理解自然界中的流体现象。具体的重点将放在微流体传输现象(与肺粘膜纤毛传输直接相关)和实验室规模的分层流体现象(与大气和海洋中的混合直接相关)的两种不同的实验制度上。通过结构化的指导系统(包括8名数学教师和1名物理教师顾问)、参与实验室的轮转、定期小组会议和修改的学习课程,RTG资助将培养新一代数学科学家,他们准备好了必要的工具,能够有效地从事真正的跨学科科学工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard McLaughlin其他文献
Mucoepidermoid carcinoma of the parotid as a second malignant neoplasm in children
腮腺粘液表皮样癌是儿童第二位恶性肿瘤
- DOI:
10.1002/1097-0142(19891115)64:10<2174::aid-cncr2820641032>3.0.co;2-f - 发表时间:
1989 - 期刊:
- 影响因子:6.2
- 作者:
T. Loy;Richard McLaughlin;L. Odom;L. Dehner - 通讯作者:
L. Dehner
Abstracts of papers presented at the 63rd annual PAA meeting
- DOI:
10.1007/bf02876188 - 发表时间:
1979-10-01 - 期刊:
- 影响因子:1.800
- 作者:
Jose L. Rueda;Donald Berrios;W. R. Amoros;H. A. Mendoza;Jose Gil Archuleta;Gene D. Easton;C. R. Brown;Doug Bruce;Elsa Camadro;S. J. Peloquin;J. R. Davis;W. B. Jones;Curtis H. Dearborn;S. H. Deboer;Robert B. Dwelle;Gale E. Kleinkopf;R. K. Steinhorst;J. J. Pavek;Gene D. Easton;Nelson Estrada;Elmer E. Ewing;Anne Hedges;Joseph B. Sieczka;Jack A. Freeman;R. W. Goth;R. E. Webb;D. C. Graham;David F. Hammond;Hauman Zozimo;M. R. Henninger;J. W. Patterson;L. K. Hiller;D. C. Koller;R. W. VanDenburgh;Don Y. Huang;Clarence A. Ryan;Barry G. Swanson;Gary M. Hyde;R. E. Thornton;Robert Kunkel;Masaru Iwanaga;Michael T. Jackson;L. C. Gonzalez;C. A. Jaworski;R. W. Goth;S. C. Phatak;Kelman Arthur;Judy Kintner;J. W. Kloepper;M. N. Schroth;A. R. Weinhold;T. Bowman;Ray Kuenemann;R. Kunkel;N. M. Holstad;D. C. Mitchell;T. S. Russell;J. A. Landeo;R. E. Hanneman;M. B. Lazin;Humberto A. Mendoza;I. J. Sung;E. E. Ewing;J. B. Sieczka;David Levy;Mark W. Martin;Richard McLaughlin;F. J. Munoz;R. L. Plaisted;K. C. Ng;M. L. Weaver;L. W. Nielsen;R. B. O’keefe;S. F. Osman;R. M. Zacharius;V. Otazu;R. T. Zink;Gary A. Secor;Eufemio T. Rasco;Robert L. Plaisted;A. F. Reeves;J. H. Hunter;Craig Ross;R. Kunkel;W. Gardner;R. C. Rowe;R. F. Sacher;W. M. Iritani;Paul Sand;F. Aphis;L. L. Sanford;T. L. Ladd;S. L. Sinden;L. L. Sanford;S. F. Osman;Slack Steven;S. A. Slack;H. A. Sanford;F. E. Manzer;Walter C. Sparks;Dwight G. Stiles;G. C. C. Tai;T. R. Tarn;A. F. Tarhan;J. N. Cash;P. Markakis;Robert E. Thornton;R. W. Vandenburgh;L. K. Hiller;M. L. Vitosh;G. W. Bird;R. W. Chase;J. W. Noling;H. Vruggink;Geesteranus;H. P. Maas;M. L. Weaver;K. C. Ng;G. G. Weis;E. K. Wade;J. O. Baldock;Arthur L. Wells;Milton Workman;Arthur Cameron;James Twomey;Wen-Wei Yu;B. G. Swanson;R. T. Zink - 通讯作者:
R. T. Zink
Richard McLaughlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard McLaughlin', 18)}}的其他基金
CAS: Estimates of the decay of diffusion induced flows in strongly stratified fluids and ergodic mixing properties of solutes driven by randomly moving walls in viscous fluids.
CAS:对强分层流体中扩散诱导流的衰减以及粘性流体中随机移动壁驱动的溶质的遍历混合特性的估计。
- 批准号:
2308063 - 财政年份:2023
- 资助金额:
$ 172.69万 - 项目类别:
Standard Grant
Collaborative Research: Self-Assembly and Aggregate Formation in Stratified Fluids
合作研究:分层流体中的自组装和聚集体形成
- 批准号:
1910824 - 财政年份:2019
- 资助金额:
$ 172.69万 - 项目类别:
Standard Grant
EMSW21-RTG: Laboratory and Mathematical Fluid Dynamics: Experiments, Computation and Modeling
EMSW21-RTG:实验室和数学流体动力学:实验、计算和建模
- 批准号:
0943851 - 财政年份:2010
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
"CMG Research: Delayed Settling of Marine Snow Through Density Transitions and Consequences for the Ocean Carbon Cycle"
“CMG 研究:通过密度转变延迟海洋雪沉降以及对海洋碳循环的影响”
- 批准号:
1025523 - 财政年份:2010
- 资助金额:
$ 172.69万 - 项目类别:
Standard Grant
Fundamental Mathematical and Experimental Fluid Dynamics
基础数学和实验流体动力学
- 批准号:
1009750 - 财政年份:2010
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RAPID: Multi-phase Buoyant Plumes in Stratified Water Study relevant to Oil Spill Implications for the Gulf oil spill distribution
RAPID:与溢油相关的分层水中的多相浮力羽流研究对海湾溢油分布的影响
- 批准号:
1045653 - 财政年份:2010
- 资助金额:
$ 172.69万 - 项目类别:
Standard Grant
Collaborative Research: CMG: Multi-Scaled Dependent, Heavy Tailed Distributions in Geophysical Flow: Physical Mechanisms and Data Assimilation
合作研究:CMG:地球物理流中的多尺度相关重尾分布:物理机制和数据同化
- 批准号:
0327906 - 财政年份:2003
- 资助金额:
$ 172.69万 - 项目类别:
Standard Grant
Research and Education in Multi-Scale Fluid Dynamics
多尺度流体动力学研究与教育
- 批准号:
0308687 - 财政年份:2003
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
Mathematical Fluid Dynamics and Education Turbulent Transport, Combustion, and Compressible Convection
数学流体动力学和教育湍流传输、燃烧和可压缩对流
- 批准号:
9996181 - 财政年份:1998
- 资助金额:
$ 172.69万 - 项目类别:
Standard Grant
Mathematical Fluid Dynamics and Education Turbulent Transport, Combustion, and Compressible Convection
数学流体动力学和教育湍流传输、燃烧和可压缩对流
- 批准号:
9701942 - 财政年份:1997
- 资助金额:
$ 172.69万 - 项目类别:
Standard Grant
相似海外基金
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
- 批准号:
2342349 - 财政年份:2024
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
- 批准号:
2230900 - 财政年份:2023
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RTG: Vertically Integrated Interdisciplinary Training in Mathematics for Human Health
RTG:人类健康数学垂直整合跨学科培训
- 批准号:
2230790 - 财政年份:2023
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RTG: Research Training Group in Logic and its Application
RTG:逻辑及其应用研究培训小组
- 批准号:
2231414 - 财政年份:2023
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
- 批准号:
2231533 - 财政年份:2023
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RTG: Numerical Mathematics and Scientific Computing
RTG:数值数学和科学计算
- 批准号:
2231482 - 财政年份:2023
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RTG: Topology, Representation Theory, and Mathematical Physics at Louisiana State University
RTG:路易斯安那州立大学拓扑学、表示论和数学物理
- 批准号:
2231492 - 财政年份:2023
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant
RTG: Linked via L-functions: training versatile researchers across number theory
RTG:通过 L 函数链接:跨数论培训多才多艺的研究人员
- 批准号:
2231514 - 财政年份:2023
- 资助金额:
$ 172.69万 - 项目类别:
Continuing Grant














{{item.name}}会员




