AF: Small: Beyond Worst-Case Analysis in Approximation Algorithms, Algorithmic Mechanism Design and Online Algorithms

AF:小:超越近似算法、算法机制设计和在线算法中的最坏情况分析

基本信息

  • 批准号:
    1016509
  • 负责人:
  • 金额:
    $ 49.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

In theoretical computer science, algorithms are usually evaluated with respect to their worst-case performance, whereas in other areas, average-case analysis is often used. Both of these approaches have drawbacks: worst-case analysis is overly pessimistic and average-case analysis often rests on unrealistic assumptions. To address these issues, a number of other analysis frameworks have been proposed including self-improving algorithms, smoothed analysis, instance-optimality, and algorithmic design based on a variety of data models. The objective of the project is to continue this line of research and develop techniques that go beyond worst-case analysis in the areas of approximation algorithms, algorithmic mechanism design and online algorithms. In the area of approximation algorithms for NP-hard problems, the project focuses on the development of approximation algorithms that achieve a kind of instance optimality. In the area of algorithmic mechanism design, the PI will continue to study the design and analysis of profit maximizing auctions in single-parameter environments and beyond. In the area of online algorithms, the PI will work to develop effective online algorithms for a fundamental and practical self-organizing data structure problem.Through the development of more effective and practical algorithms and a deeper understanding of the performance of these algorithms in practice, this research has the potential to impact a variety of subfields of computer science including artificial intelligence, systems and networking, data mining, and electronic commerce.
在理论计算机科学中,算法通常根据其最坏情况的性能进行评估,而在其他领域,通常使用平均情况分析。这两种方法都有缺陷:最坏情况的分析过于悲观,平均情况的分析往往建立在不切实际的假设之上。为了解决这些问题,已经提出了许多其他分析框架,包括自我改进算法、平滑分析、实例最优以及基于各种数据模型的算法设计。该项目的目标是继续这方面的研究,并在近似算法、算法机制设计和在线算法领域开发超越最坏情况分析的技术。在NP-Hard问题的近似算法领域,该项目专注于开发实现一种实例最优性的近似算法。在算法机制设计方面,PI将继续研究在单参数环境和其他环境下实现利润最大化拍卖的设计和分析。在在线算法领域,PI将致力于为一个基本和实用的自组织数据结构问题开发有效的在线算法。通过开发更有效和实用的算法,以及对这些算法在实践中的性能的更深入了解,这项研究有可能影响计算机科学的各个子领域,包括人工智能、系统与网络、数据挖掘和电子商务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Karlin其他文献

Theory of Computing
计算理论
  • DOI:
    10.4086/toc
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandr Andoni;Nikhil Bansal;P. Beame;Giuseppe Italiano;Sanjeev Khanna;Ryan O’Donnell;T. Pitassi;T. Rabin;Tim Roughgarden;Clifford Stein;Rocco Servedio;Amir Abboud;Nima Anari;Ibm Srinivasan Arunachalam;T. J. Watson;Research Center;Petra Berenbrink;Aaron Bernstein;Aditya Bhaskara;Sayan Bhattacharya;Eric Blais;H. Bodlaender;Adam Bouland;Anne Broadbent;Mark Bun;Timothy Chan;Arkadev Chattopadhyay;Xue Chen;Gil Cohen;Dana Dachman;Anindya De;Shahar Dobzhinski;Zhiyi Huang;Ken;Robin Kothari;Marvin Künnemann;Tu Kaiserslautern;Rasmus Kyng;E. Zurich;Sophie Laplante;D. Lokshtanov;S. Mahabadi;Nicole Megow;Ankur Moitra;Technion Shay Moran;Google Research;Christopher Musco;Prasad Raghavendra;Alex Russell;Laura Sanità;Alex Slivkins;David Steurer;Epfl Ola Svensson;Chaitanya Swamy;Madhur Tulsiani;Christos Tzamos;Andreas Wiese;Mary Wootters;Huacheng Yu;Aaron Potechin;Aaron Sidford;Aarushi Goel;Aayush Jain;Abhiram Natarajan;Abhishek Shetty;Adam Karczmarz;Adam O’Neill;Aditi Dudeja;Aditi Laddha;Aditya Krishnan;Adrian Vladu Afrouz;J. Ameli;Ainesh Bakshi;Akihito Soeda;Akshay Krishnamurthy;Albert Cheu;A. Grilo;Alex Wein;Alexander Belov;Alexander Block;Alexander Golovnev;Alexander Poremba;Alexander Shen;Alexander Skopalik;Alexandra Henzinger;Alexandros Hollender;Ali Parviz;Alkis Kalavasis;Allen Liu;Aloni Cohen;Amartya Shankha;Biswas Amey;Bhangale Amin;Coja;Yehudayoff Amir;Zandieh Amit;Daniely Amit;Kumar Amnon;Ta;Beimel Anand;Louis Anand Natarajan;Anders Claesson;André Chailloux;André Nusser;Andrea Coladangelo;Andrea Lincoln;Andreas Björklund;Andreas Maggiori;A. Krokhin;A. Romashchenko;Andrej Risteski;Anirban Chowdhury;Anirudh Krishna;A. Mukherjee;Ankit Garg;Anna Karlin;Anthony Leverrier;Antonio Blanca;A. Antoniadis;Anupam Gupta;Anupam Prakash;A. Singh;Aravindan Vijayaraghavan;Argyrios Deligkas;Ariel Kulik;Ariel Schvartzman;Ariel Shaulker;A. Cornelissen;Arka Rai;Choudhuri Arkady;Yerukhimovich Arnab;Bhattacharyya Arthur Mehta;Artur Czumaj;A. Backurs;A. Jambulapati;Ashley Montanaro;A. Sah;A. Mantri;Aviad Rubinstein;Avishay Tal;Badih Ghazi;Bartek Blaszczyszyn;Benjamin Moseley;Benny Pinkas;Bento Natura;Bernhard Haeupler;Bill Fefferman;B. Mance;Binghui Peng;Bingkai Lin;B. Sinaimeri;Bo Waggoner;Bodo Manthey;Bohdan Kivva;Brendan Lucier Bundit;Laekhanukit Burak;Sahinoglu Cameron;Seth Chaodong Zheng;Charles Carlson;Chen;Chenghao Guo;Chenglin Fan;Chenwei Wu;Chethan Kamath;Chi Jin;J. Thaler;Jyun;Kaave Hosseini;Kaito Fujii;Kamesh Munagala;Kangning Wang;Kanstantsin Pashkovich;Karl Bringmann Karol;Wegrzycki Karteek;Sreenivasaiah Karthik;Chandrasekaran Karthik;Sankararaman Karthik;C. S. K. Green;Larsen Kasturi;Varadarajan Keita;Xagawa Kent Quanrud;Kevin Schewior;Kevin Tian;Kilian Risse;Kirankumar Shiragur;K. Pruhs;K. Efremenko;Konstantin Makarychev;Konstantin Zabarnyi;Krišj¯anis Pr¯usis;Kuan Cheng;Kuikui Liu;Kunal Marwaha;Lars Rohwedder László;Kozma László;A. Végh;L'eo Colisson;Leo de Castro;Leonid Barenboim Letong;Li;Li;L. Roditty;Lieven De;Lathauwer Lijie;Chen Lior;Eldar Lior;Rotem Luca Zanetti;Luisa Sinisclachi;Luke Postle;Luowen Qian;Lydia Zakynthinou;Mahbod Majid;Makrand Sinha;Malin Rau Manas;Jyoti Kashyop;Manolis Zampetakis;Maoyuan Song;Marc Roth;Marc Vinyals;Marcin Bieńkowski;Marcin Pilipczuk;Marco Molinaro;Marcus Michelen;Mark de Berg;M. Jerrum;Mark Sellke;Mark Zhandry;Markus Bläser;Markus Lohrey;Marshall Ball;Marthe Bonamy;Martin Fürer;Martin Hoefer;M. Kokainis;Masahiro Hachimori;Matteo Castiglioni;Matthias Englert;Matti Karppa;Max Hahn;Max Hopkins;Maximilian Probst;Gutenberg Mayank Goswami;Mehtaab Sawhney;Meike Hatzel;Meng He;Mengxiao Zhang;Meni Sadigurski;M. Parter;M. Dinitz;Michael Elkin;Michael Kapralov;Michael Kearns;James R. Lee;Sudatta Bhattacharya;Michal Koucký;Hadley Black;Deeparnab Chakrabarty;C. Seshadhri;Mahsa Derakhshan;Naveen Durvasula;Nika Haghtalab;Peter Kiss;Thatchaphol Saranurak;Soheil Behnezhad;M. Roghani;Hung Le;Shay Solomon;Václav Rozhon;Anders Martinsson;Christoph Grunau;G. Z. —. Eth;Zurich;Switzerland;Morris Yau — Massachusetts;Noah Golowich;Dhruv Rohatgi — Massachusetts;Qinghua Liu;Praneeth Netrapalli;Csaba Szepesvári;Debarati Das;Jacob Gilbert;Mohammadtaghi Hajiaghayi;Tomasz Kociumaka;B. Saha;K. Bringmann;Nick Fischer — Weizmann;Ce Jin;Yinzhan Xu — Massachusetts;Virginia Vassilevska Williams;Yinzhan Xu;Josh Alman;Kevin Rao;Hamed Hatami;—. XiangMeng;McGill University;Edith Cohen;Xin Lyu;Tamás Jelani Nelson;Uri Stemmer — Google;Research;Daniel Alabi;Pravesh K. Kothari;Pranay Tankala;Prayaag Venkat;Fred Zhang;Samuel B. Hopkins;Gautam Kamath;Shyam Narayanan — Massachusetts;Marco Gaboardi;R. Impagliazzo;Rex Lei;Satchit Sivakumar;Jessica Sorrell;T. Korhonen;Marco Bressan;Matthias Lanzinger;Huck Bennett;Mahdi Cheraghchi;V. Guruswami;João Ribeiro;Jan Dreier;Nikolas Mählmann;Sebastian Siebertz — TU Wien;The Randomized k ;Conjecture Is;False;Sébastien Bubeck;Christian Coester;Yuval Rabani — Microsoft;Wei;Ethan Mook;Daniel Wichs;Joshua Brakensiek;Sai Sandeep — Stanford;University;Lorenzo Ciardo;Stanislav Živný;Amey Bhangale;Subhash Khot;Dor Minzer;David Ellis;Guy Kindler;Noam Lifshitz;Ronen Eldan;Dan Mikulincer;George Christodoulou;E. Koutsoupias;Annamária Kovács;José Correa;Andrés Cristi;Xi Chen;Matheus Venturyne;Xavier Ferreira;David C. Parkes;Yang Cai;Jinzhao Wu;Zhengyang Liu;Zeyu Ren;Zihe Wang;Ravishankar Krishnaswamy;Shi Li;Varun Suriyanarayana
  • 通讯作者:
    Varun Suriyanarayana

Anna Karlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Karlin', 18)}}的其他基金

AF: SMALL : Algorithmic and Game Theoretic Problems Arising in Modern Matching Markets
AF:小:现代匹配市场中出现的算法和博弈论问题
  • 批准号:
    1813135
  • 财政年份:
    2018
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
AF: Small: Towards More Realistic Models in Algorithmic Mechanism Design
AF:小:算法机制设计中迈向更现实的模型
  • 批准号:
    1420381
  • 财政年份:
    2014
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
Mechanism Design for Profit Maximization
利润最大化的机制设计
  • 批准号:
    0635147
  • 财政年份:
    2006
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
Spectral Analysis for Data Mining
数据挖掘的频谱分析
  • 批准号:
    0105406
  • 财政年份:
    2001
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
Practical Competitive Analysis (Computer Science)
实用竞争分析(计算机科学)
  • 批准号:
    9450075
  • 财政年份:
    1994
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322191
  • 财政年份:
    2023
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
Collaborative Research: U.S.-Ireland R&D Partnership: CIF: AF: Small: Enabling Beyond-5G Wireless Access Networks with Robust and Scalable Cell-Free Massive MIMO
合作研究:美国-爱尔兰 R
  • 批准号:
    2322190
  • 财政年份:
    2023
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
AF: Small: The Polymorphic Gateway between Structure and Algorithms: Beyond CSP Dichotomy
AF:小:结构和算法之间的多态网关:超越 CSP 二分法
  • 批准号:
    2228287
  • 财政年份:
    2022
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
NSF-BSF: AF: Small: Algorithmic Game Theory: Equilibria and Beyond
NSF-BSF:AF:小:算法博弈论:均衡及超越
  • 批准号:
    2112824
  • 财政年份:
    2021
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
AF: SMALL: Beyond Worst-Case Analysis for Computing with Polynomials
AF:SMALL:多项式计算的超越最坏情况分析
  • 批准号:
    2110075
  • 财政年份:
    2021
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
AF: Small: Beyond Worst-Case Analysis
AF:小:超越最坏情况分析
  • 批准号:
    2006737
  • 财政年份:
    2020
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
AF: Small: Graph Theory and Its Uses in Algorithms and Beyond
AF:小:图论及其在算法及其他领域的应用
  • 批准号:
    2006464
  • 财政年份:
    2020
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
AF: CIF: Small: Communication complexity techniques beyond classical information theory
AF:CIF:小:超越经典信息论的通信复杂性技术
  • 批准号:
    2006589
  • 财政年份:
    2020
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
AF: Small: Distributed Optimization Beyond Worst Case Topologies
AF:小型:超越最坏情况拓扑的分布式优化
  • 批准号:
    1910588
  • 财政年份:
    2019
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
AF: Small: Learning Theory for a Modern World: Transfer Learning, Unsupervised Learning, and Beyond Prediction
AF:小:现代世界的学习理论:迁移学习、无监督学习和超越预测
  • 批准号:
    1910321
  • 财政年份:
    2019
  • 资助金额:
    $ 49.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了