Molecular Insights into Phytochrome Photoactivation and Signaling

光敏色素光活化和信号传导的分子洞察

基本信息

  • 批准号:
    1022010
  • 负责人:
  • 金额:
    $ 86.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

Intellectual MeritA complex array of photoreceptors coordinates the response of most organisms to their surrounding light environment. One of the most influential is the phytochromes (Phys), a large and diverse group of photoreversible chromoproteins that use a bilin pigment for light detection. These biliproteins sense red (R) and far-red light (FR) through two relatively stable conformational states, an R-absorbing Pr form that typically represents the ground state, and an FR-absorbing Pfr form that typically represents the activated state. By photointerconverting between Pr and Pfr, Phys act as light-regulated switches. Phy-type photoreceptors were first discovered in higher plants by their ability to trigger numerous photoresponses critical for agricultural productivity. More recently, they were found in various microorganisms including bacteria and fungi. Despite their agricultural importance and evolutionary conservation, it is still not fully understood at the molecular level how Phy-type photoreceptors photoconvert between Pr and Pfr nor how this switch tells organisms about the light around them. A major breakthrough was the success in determining the first 3-D structure of the chromophore-binding module as Pr by x-ray crystallography using a Phy from the proteobacterium Deinococcus radiodurans. This structure showed the configuration of the bilin pigment and how it is cradled within its binding pocket, identified a figure-of-eight knot that stabilizes the pocket, discovered a heretofore unknown dimerization domain between sister Phys, and revealed how plant Phys arose from their microbial ancestors. During the prior NSF-funded studies, progress was made in determining the first paired Pr and Pfr solution structures of the chromophore pocket by nuclear magnetic resonance (NMR) spectroscopy using a Phy from the thermotolerant cyanobacterium Synechococcus OSB. Comparison of these structures provided the first glimpse into how Phys photoconvert between their ground and activated states. Contrary to expectations, the A pyrrole ring and not the D ring of the bilin pigment was discovered to rotate during Pr to Pfr photoconversion. This flip induces structural rearrangements within the polypeptide, which then appear to alter the contact between adjacent output domains within the Phy dimer to ultimately modulate signaling. The intellectual merits of this renewal project are to build upon these structural studies to answer key questions, including: is this A ring rotation central to the photoconversion of all Phys? What is the structure of a complete Phy dimer? How does rotation of the pigment followed by structural changes within the binding pocket alter Phy signaling? Significant to this work are the development of recombinant systems that produce large amounts of assembled photoreceptors, and the study of a novel set of Phys that photoconvert between blue- and green-light absorbing forms which should aid in the analysis of the photoactivated state. Specifically, this research plan will: (1) use a combination of NMR spectroscopy and x-ray crystallography to provide further support for the rotation of the A ring during photoconversion, (2) use x-ray crystallography to develop more complete structures of Phys, (3) exploit single particle electron microscopy to determine the architecture of the Phy dimer as Pr and Pfr, and (4) use biochemical methods to further understand how light-driven conformational changes in the Phy dimer regulate signaling. Broader ImpactThis research will provide an essential framework to better understand the structure, function, and evolution of the Phy superfamily. The anticipated results will ultimately help elucidate how microorganisms and plants sense their light environment, which could have important ramifications for understanding microbial ecosystems, the control of important microbial pathogens, and the development of new strategies to improve the productivity of food and biofuel crops. In addition, the project will enhance scientific infrastructure via a cooperative arrangement for the training of postdoctoral, graduate, undergraduate, and minority students in modern molecular and structure-based approaches in biological research.
智力优势一组复杂的光感受器协调大多数生物对周围光环境的反应。 其中最有影响力的是光敏色素(Phys),这是一组庞大而多样的光可逆色蛋白,它们使用胆色素进行光检测。 这些胆蛋白通过两种相对稳定的构象状态感测红光(R)和远红光(FR),R-吸收Pr形式通常代表基态,FR-吸收Pfr形式通常代表活化态。 通过Pr和Pfr之间的光相互转换,Phys充当光调节开关。 Phy型光感受器首先在高等植物中发现,它们能够触发对农业生产力至关重要的许多光反应。 最近,它们在包括细菌和真菌在内的各种微生物中被发现。 尽管它们在农业上的重要性和进化上的保守性,但在分子水平上仍然没有完全理解Phy型光感受器如何在Pr和Pfr之间进行光转换,也没有完全理解这种开关如何告诉生物体周围的光。 一个重大的突破是成功地确定了第一个3-D结构的发色团结合模块Pr的X射线晶体学使用的Phy从变形杆菌Deinococcus radiodurans。 这个结构显示了胆色素的结构,以及它是如何在其结合口袋中的摇篮,确定了一个8字结,稳定了口袋,发现了一个迄今未知的姐妹Phys之间的二聚化结构域,并揭示了植物Phys如何从它们的微生物祖先中产生。 在之前的NSF资助的研究中,取得了进展,在确定第一对Pr和Pfr溶液结构的发色团口袋的核磁共振(NMR)光谱使用Phy从耐热蓝藻聚球藻OSB。 这些结构的比较提供了第一次瞥见Phys如何在基态和激活态之间进行光转换。 与预期相反,发现在Pr到Pfr光转换期间,A吡咯环而不是胆色素的D环旋转。 这种翻转诱导多肽内的结构重排,然后似乎改变Phy二聚体内相邻输出结构域之间的接触,以最终调节信号传导。 这个更新项目的智力价值是建立在这些结构研究的基础上,以回答关键问题,包括:这是一个环旋转的中心,所有物理的光转换?完整的Phy二聚体的结构是什么?如何旋转的色素,其次是结合口袋内的结构变化改变Phy信号? 这项工作的重要性是重组系统的开发,产生大量的组装光感受器,和一组新的物理之间的蓝光和绿光吸收形式,这应该有助于分析的光活化状态的光转换的研究。 具体而言,该研究计划将:(1)使用NMR光谱学和X射线晶体学的组合来为A环在光转化期间的旋转提供进一步的支持,(2)使用X射线晶体学来开发Phys的更完整的结构,(3)利用单粒子电子显微镜来确定Phy二聚体作为Pr和Pfr的结构,以及(4)使用生物化学方法来进一步理解Phy二聚体中光驱动的构象变化如何调节信号传导。更广泛的影响这项研究将提供一个必要的框架,以更好地了解Phy超家族的结构,功能和进化。 预期的结果最终将有助于阐明微生物和植物如何感知它们的光环境,这可能对理解微生物生态系统、控制重要的微生物病原体以及开发提高粮食和生物燃料作物生产力的新策略产生重要影响。 此外,该项目将通过合作安排加强科学基础设施,为博士后、研究生、本科生和少数民族学生提供生物研究中基于现代分子和结构的方法的培训。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Vierstra其他文献

Comparison of the effects of exogenous native phytochrome and in-vivo irradiation on in-vitro transcription in isolated nuclei from barley (Hordeum vulgare)
  • DOI:
    10.1007/bf00402984
  • 发表时间:
    1987-04-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Egon Mösinger;Alfred Batschauer;Richard Vierstra;Klaus Apel;Eberhard Schäfer
  • 通讯作者:
    Eberhard Schäfer
Genes encoding ubiquitin and related proteins
  • DOI:
    10.1007/bf02671580
  • 发表时间:
    1994-06-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Richard Vierstra
  • 通讯作者:
    Richard Vierstra

Richard Vierstra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Vierstra', 18)}}的其他基金

RESEARCH-PGR: Defining the Sumoylation System in Maize and Its Roles in Stress Protection
研究-PGR:定义玉米中的苏酰化系统及其在应激保护中的作用
  • 批准号:
    1546862
  • 财政年份:
    2016
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Standard Grant
EAGER: Defining the SUMOylation System in Maize and its Roles in Stress Protection
EAGER:定义玉米中的 SUMOylation 系统及其在应激保护中的作用
  • 批准号:
    1623467
  • 财政年份:
    2015
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Standard Grant
MOLECULAR INSIGHTS INTO PHYTOCHROME PHOTOACTIVATION AND SIGNALING
对光敏色素光激活和信号转导的分子洞察
  • 批准号:
    1623935
  • 财政年份:
    2015
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Continuing Grant
MOLECULAR INSIGHTS INTO PHYTOCHROME PHOTOACTIVATION AND SIGNALING
对光敏色素光激活和信号转导的分子洞察
  • 批准号:
    1329956
  • 财政年份:
    2013
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Continuing Grant
EAGER: Defining the SUMOylation System in Maize and its Roles in Stress Protection
EAGER:定义玉米中的 SUMOylation 系统及其在应激保护中的作用
  • 批准号:
    1232752
  • 财政年份:
    2012
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Standard Grant
Arabidopsis 2010: Functional Analysis of Ubiquitin-Protein Ligase (E3) Families in Arabidopis
拟南芥 2010:拟南芥泛素蛋白连接酶 (E3) 家族的功能分析
  • 批准号:
    0929100
  • 财政年份:
    2009
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Continuing Grant
Structural and Functional Analysis of Microbial Phytochromes as Models for the Phytochrome Superfamily
作为光敏色素超家族模型的微生物光敏色素的结构和功能分析
  • 批准号:
    0719153
  • 财政年份:
    2007
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Continuing Grant
Arabidopsis 2010: Functional Analysis of the Ubiquitin-Protein Ligase (E3) Families in Arabidopsis
拟南芥 2010:拟南芥中泛素蛋白连接酶 (E3) 家族的功能分析
  • 批准号:
    0519970
  • 财政年份:
    2005
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Continuing Grant
Structural and Functional Analysis of the Bacteriophytochrome Photoreceptors: Models for the Phytochrome Superfamily
细菌光敏色素光感受器的结构和功能分析:光敏色素超家族的模型
  • 批准号:
    0424062
  • 财政年份:
    2004
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Standard Grant
The Bacteriophytochrome Photoreceptor From Deinococcus radiodurans: A Paradigm for the Phytochrome Signaling Cascade
来自耐辐射奇球菌的细菌光敏色素光感受器:光敏色素信号级联的范例
  • 批准号:
    0091413
  • 财政年份:
    2001
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Continuing Grant

相似国自然基金

Behavioral Insights on Cooperation in Social Dilemmas
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国优秀青年学者研究基金项目

相似海外基金

Molecular insights into the allosteric regulation of opioid receptors
阿片受体变构调节的分子见解
  • 批准号:
    DE240100931
  • 财政年份:
    2024
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Discovery Early Career Researcher Award
Molecular insights into lipid-mediated T cell immunity
脂质介导的 T 细胞免疫的分子见解
  • 批准号:
    DE230101042
  • 财政年份:
    2023
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Discovery Early Career Researcher Award
Molecular insights into food physical property revealed by quantum beam structural analysis in conjunction with rheology measurements
量子束结构分析结合流变学测量揭示了对食品物理特性的分子洞察
  • 批准号:
    22K05511
  • 财政年份:
    2022
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New insights into the molecular regulation of mechanotransduction
力转导分子调控的新见解
  • 批准号:
    10472251
  • 财政年份:
    2022
  • 资助金额:
    $ 86.54万
  • 项目类别:
Insights into molecular driving mechanisms of the organelle division ring by a real-time fluorescence imaging
通过实时荧光成像深入了解细胞器分裂环的分子驱动机制
  • 批准号:
    22H02653
  • 财政年份:
    2022
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular insights into the toxicology of trace elements in aquatic organisms using metallomic approaches
使用金属组学方法对水生生物中微量元素毒理学的分子见解
  • 批准号:
    RGPIN-2017-05396
  • 财政年份:
    2022
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanistic insights into nutrient availability responses, from molecular changes to whole-body effects
从分子变化到全身效应,深入了解营养物质可用性反应的机制
  • 批准号:
    RGPIN-2022-05149
  • 财政年份:
    2022
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular insights into the targeting of proteins to the inner nuclear membrane
对蛋白质靶向内核膜的分子见解
  • 批准号:
    RGPIN-2022-04259
  • 财政年份:
    2022
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanistic insights into nutrient availability responses, from molecular changes to whole-body effects
从分子变化到全身效应,深入了解营养物质可用性反应的机制
  • 批准号:
    DGECR-2022-00317
  • 财政年份:
    2022
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Discovery Launch Supplement
Molecular insights into the toxicology of trace elements in aquatic organisms using metallomic approaches
使用金属组学方法对水生生物中微量元素毒理学的分子见解
  • 批准号:
    RGPIN-2017-05396
  • 财政年份:
    2021
  • 资助金额:
    $ 86.54万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了