MOLECULAR INSIGHTS INTO PHYTOCHROME PHOTOACTIVATION AND SIGNALING

对光敏色素光激活和信号转导的分子洞察

基本信息

  • 批准号:
    1623935
  • 负责人:
  • 金额:
    $ 56.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-10-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Intellectual MeritA complex array of photoreceptors coordinates the response of organisms to their surrounding light environment. One influential set is the phytochromes (Phys), a large and diverse group of photoreversible chromoproteins that use a bilin pigment for light detection. These dimeric biliproteins sense red (R) and far-red light (FR) through two relatively stable conformational states, an R-absorbing Pr form that typically represents the ground state, and an FR-absorbing Pfr form that typically represents the activated state. By photointerconverting between Pr and Pfr, Phys act as light-regulated switches. Despite their agricultural and pathological importance and evolutionary conservation, it is not fully understood at the molecular level how Phy-type photoreceptors photoconvert between Pr and Pfr nor how this switch reports to organisms about the light around them. In the past few years, major breakthroughs have been made in understanding how Phys work at the atomic level through the determination of 3-D structural models of the photosensing module from several microbial representatives. These structures revealed the configuration of the bilin pigment and how it is cradled within its binding pocket, identified a likely route whereby plant Phys evolved from bacterial progenitors, and identified several unique structural features likely critical to signaling. During prior NSF-funded studies, the first paired ground and photoactivated state structures of the chromophore pocket from two divergent Phys were generated by nuclear magnetic resonance (NMR) spectroscopy. Comparisons of these structures provided the first glimpse into how light triggers light perception. Included are light-driven rotation of the bilin followed by rearrangement of numerous chromophore/amino acid contacts. Ultimately, these alterations must convert light energy into mechanical motion that reorganizes the output module and affect its signaling potential. This project will build upon these structural studies to answer key questions. What is the structure of a complete Phy dimer? How does rotation of the bilin followed by structural changes within the binding pocket alter Phy signaling? What is the structure of a plant Phy and how can this information be used to engineer Phy signaling for agricultural benefit? Significant to this work are the development of recombinant systems that produce large amounts of assembled photoreceptors and advances that have culminated in the generation of diffraction quality crystals of a plant Phy. Specifically, this research plan will: (1) develop more complete structures of a microbial Phy with its signal output module, (2) define how the knot, spine, and hairpin features contribute to Phy signaling, (3) determine how the distinctive cyanobacteriochrome subfamily uniquely detects other portions of the light spectrum, (4) generate an X-ray crystallographic structure of the photosensing module of a plant Phy, and (5) use a combination of NMR spectroscopic, X-ray crystallographic, and single particle electron microscopic approaches to generate models of a complete plant Phy dimer with and without signaling partners. Broader Impacts: This research will provide an essential framework to better understand the structure, function, and evolution of the Phy superfamily. The anticipated results will ultimately help elucidate how microorganisms and plants sense their light environment, which could have important ramifications for understanding microbial ecosystems, the control of important microbial pathogens, and for the development of new strategies to improve the productivity of food and biofuel crops. In addition, the project will enhance scientific infrastructure via a cooperative arrangement for the training of postdoctoral, graduate, undergraduate, and minority students in modern molecular and structure-based approaches in biological research. Training will also involve high school students sponsored by the Wisconsin Youth Apprenticeship Program.
智力优势一组复杂的光感受器协调有机体对周围光环境的反应。 一个有影响力的集合是光敏色素(Phys),这是一个庞大而多样的光可逆色蛋白组,使用胆色素进行光检测。 这些二聚胆蛋白通过两种相对稳定的构象状态感测红光(R)和远红光(FR),R吸收Pr形式通常代表基态,FR吸收Pfr形式通常代表活化态。 通过Pr和Pfr之间的光相互转换,Phys充当光调节开关。尽管它们在农业和病理学上的重要性和进化上的保守性,但在分子水平上还没有完全理解Phy型光感受器如何在Pr和Pfr之间进行光转换,也没有完全理解这种转换如何向生物体报告它们周围的光。 在过去的几年中,通过确定来自几种微生物代表的光敏模块的3-D结构模型,在理解Phys如何在原子水平上工作方面取得了重大突破。 这些结构揭示了胆色素的结构以及它是如何在其结合口袋中的,确定了植物Phys从细菌祖细胞进化的可能途径,并确定了几个可能对信号传导至关重要的独特结构特征。在之前NSF资助的研究中,通过核磁共振(NMR)光谱产生了来自两个不同Phys的发色团口袋的第一对基态和光活化态结构。这些结构的比较提供了第一次瞥见光如何触发光感知。包括光驱动的胆色素旋转,然后重排的许多发色团/氨基酸接触。 最终,这些改变必须将光能转化为机械运动,重新组织输出模块并影响其信号潜力。 本项目将在这些结构研究的基础上回答关键问题。 完整的Phy二聚体的结构是什么?结合口袋内胆色素的旋转和结构变化是如何改变Phy信号的? 植物Phy的结构是什么?如何利用这些信息来设计Phy信号以获得农业效益?这项工作的重要意义是重组系统的发展,产生大量的组装光感受器和进展,最终在植物Phy的衍射质量晶体的产生。 具体而言,该研究计划将:(1)开发具有其信号输出模块的微生物Phy的更完整的结构,(2)定义结、刺和发夹特征如何有助于Phy信号传导,(3)确定独特的蓝细菌色素亚家族如何独特地检测光谱的其他部分,(4)产生植物Phy的光敏模块的X射线晶体学结构,和(5)使用核磁共振光谱、X射线晶体学和单粒子电子显微镜方法的组合来生成有和没有信号传导伙伴的完整植物Phy二聚体的模型。更广泛的影响:这项研究将提供一个必要的框架,以更好地了解Phy超家族的结构,功能和进化。 预期的结果最终将有助于阐明微生物和植物如何感知它们的光环境,这可能对理解微生物生态系统、控制重要的微生物病原体以及制定提高粮食和生物燃料作物生产力的新战略产生重要影响。 此外,该项目将通过合作安排加强科学基础设施,为博士后、研究生、本科生和少数民族学生提供生物研究中基于现代分子和结构的方法的培训。培训还将涉及由威斯康星州青年学徒计划赞助的高中生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Vierstra其他文献

Comparison of the effects of exogenous native phytochrome and in-vivo irradiation on in-vitro transcription in isolated nuclei from barley (Hordeum vulgare)
  • DOI:
    10.1007/bf00402984
  • 发表时间:
    1987-04-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Egon Mösinger;Alfred Batschauer;Richard Vierstra;Klaus Apel;Eberhard Schäfer
  • 通讯作者:
    Eberhard Schäfer
Genes encoding ubiquitin and related proteins
  • DOI:
    10.1007/bf02671580
  • 发表时间:
    1994-06-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Richard Vierstra
  • 通讯作者:
    Richard Vierstra

Richard Vierstra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Vierstra', 18)}}的其他基金

RESEARCH-PGR: Defining the Sumoylation System in Maize and Its Roles in Stress Protection
研究-PGR:定义玉米中的苏酰化系统及其在应激保护中的作用
  • 批准号:
    1546862
  • 财政年份:
    2016
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Standard Grant
EAGER: Defining the SUMOylation System in Maize and its Roles in Stress Protection
EAGER:定义玉米中的 SUMOylation 系统及其在应激保护中的作用
  • 批准号:
    1623467
  • 财政年份:
    2015
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Standard Grant
MOLECULAR INSIGHTS INTO PHYTOCHROME PHOTOACTIVATION AND SIGNALING
对光敏色素光激活和信号转导的分子洞察
  • 批准号:
    1329956
  • 财政年份:
    2013
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Continuing Grant
EAGER: Defining the SUMOylation System in Maize and its Roles in Stress Protection
EAGER:定义玉米中的 SUMOylation 系统及其在应激保护中的作用
  • 批准号:
    1232752
  • 财政年份:
    2012
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Standard Grant
Molecular Insights into Phytochrome Photoactivation and Signaling
光敏色素光活化和信号传导的分子洞察
  • 批准号:
    1022010
  • 财政年份:
    2010
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Standard Grant
Arabidopsis 2010: Functional Analysis of Ubiquitin-Protein Ligase (E3) Families in Arabidopis
拟南芥 2010:拟南芥泛素蛋白连接酶 (E3) 家族的功能分析
  • 批准号:
    0929100
  • 财政年份:
    2009
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Continuing Grant
Structural and Functional Analysis of Microbial Phytochromes as Models for the Phytochrome Superfamily
作为光敏色素超家族模型的微生物光敏色素的结构和功能分析
  • 批准号:
    0719153
  • 财政年份:
    2007
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Continuing Grant
Arabidopsis 2010: Functional Analysis of the Ubiquitin-Protein Ligase (E3) Families in Arabidopsis
拟南芥 2010:拟南芥中泛素蛋白连接酶 (E3) 家族的功能分析
  • 批准号:
    0519970
  • 财政年份:
    2005
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Continuing Grant
Structural and Functional Analysis of the Bacteriophytochrome Photoreceptors: Models for the Phytochrome Superfamily
细菌光敏色素光感受器的结构和功能分析:光敏色素超家族的模型
  • 批准号:
    0424062
  • 财政年份:
    2004
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Standard Grant
The Bacteriophytochrome Photoreceptor From Deinococcus radiodurans: A Paradigm for the Phytochrome Signaling Cascade
来自耐辐射奇球菌的细菌光敏色素光感受器:光敏色素信号级联的范例
  • 批准号:
    0091413
  • 财政年份:
    2001
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Continuing Grant

相似国自然基金

Behavioral Insights on Cooperation in Social Dilemmas
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国优秀青年学者研究基金项目

相似海外基金

Molecular insights into the allosteric regulation of opioid receptors
阿片受体变构调节的分子见解
  • 批准号:
    DE240100931
  • 财政年份:
    2024
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Discovery Early Career Researcher Award
Molecular insights into lipid-mediated T cell immunity
脂质介导的 T 细胞免疫的分子见解
  • 批准号:
    DE230101042
  • 财政年份:
    2023
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Discovery Early Career Researcher Award
Molecular insights into food physical property revealed by quantum beam structural analysis in conjunction with rheology measurements
量子束结构分析结合流变学测量揭示了对食品物理特性的分子洞察
  • 批准号:
    22K05511
  • 财政年份:
    2022
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New insights into the molecular regulation of mechanotransduction
力转导分子调控的新见解
  • 批准号:
    10472251
  • 财政年份:
    2022
  • 资助金额:
    $ 56.69万
  • 项目类别:
Insights into molecular driving mechanisms of the organelle division ring by a real-time fluorescence imaging
通过实时荧光成像深入了解细胞器分裂环的分子驱动机制
  • 批准号:
    22H02653
  • 财政年份:
    2022
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular insights into the toxicology of trace elements in aquatic organisms using metallomic approaches
使用金属组学方法对水生生物中微量元素毒理学的分子见解
  • 批准号:
    RGPIN-2017-05396
  • 财政年份:
    2022
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanistic insights into nutrient availability responses, from molecular changes to whole-body effects
从分子变化到全身效应,深入了解营养物质可用性反应的机制
  • 批准号:
    RGPIN-2022-05149
  • 财政年份:
    2022
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Discovery Grants Program - Individual
Molecular insights into the targeting of proteins to the inner nuclear membrane
对蛋白质靶向内核膜的分子见解
  • 批准号:
    RGPIN-2022-04259
  • 财政年份:
    2022
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanistic insights into nutrient availability responses, from molecular changes to whole-body effects
从分子变化到全身效应,深入了解营养物质可用性反应的机制
  • 批准号:
    DGECR-2022-00317
  • 财政年份:
    2022
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Discovery Launch Supplement
Molecular insights into the toxicology of trace elements in aquatic organisms using metallomic approaches
使用金属组学方法对水生生物中微量元素毒理学的分子见解
  • 批准号:
    RGPIN-2017-05396
  • 财政年份:
    2021
  • 资助金额:
    $ 56.69万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了