BECS: Rare Systematic Risk in Markets: Modelling, Theory and Computation

BECS:市场中罕见的系统性风险:建模、理论和计算

基本信息

  • 批准号:
    1024837
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-15 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

This is an exploratory proposal which seeks to understand the interaction between complexity and rare events in financial systems. Specifically, we seek to model the behavior of central counterparties and banks. Rare events in such systems often come from interaction between various parts of the system. We will use the tools of large deviations and noncooperative game theory to characterize various aspects of how systemic and idiosyncratic risk propagate through nonlinearities in high-dimensional financial systems.The focus of this proposal is on two problems which highlight several aspects of complexity in several exemplary financial systems. In particular, we are interested in central counterparties and banks. The complexity which we wish to investigate is the variety of risks which can affect financial systems, and the (nonlinear) feedbacks between them. Our motivation in these problems is to understand and control pathways of financial collapse. Assumedly, regulatory requirements make financial collapse rare. Amongst these rare configurations corresponding to financial meltdown or market collapse, which ones are the ``most'' likely? How can we efficiently simulate these scenarios? Furthermore, can we control the system and design suitable market mechanisms so that meltdown, if it occurs, is most likely to occur in some ``preferred'' way? An intrinsic part of this analysis is the inherently noncooperative nature of financial systems; they involve a large number of agents, each of whom seeks to maximize its own profit. When considering the associated control problem, we observe that the large population of agents leads to high dimensional problems that may often be intractable. We intend to examine whether mean-field approximations may be employed to obtain a characterization of aggregate behavior. Additionally, Our focus is the impact of this structure on rare events. The competing interactions between the different parts of the system imply that the behavior of the system cannot in general be fully understood by looking solely at a part of the system.
这是一项探索性提案,旨在了解金融系统中的复杂性和罕见事件之间的相互作用。 具体来说,我们寻求对中央对手方和银行的行为进行建模。 此类系统中的罕见事件通常来自系统各个部分之间的交互。 我们将使用大偏差和非合作博弈论的工具来描述系统性风险和特殊风险如何通过高维金融系统中的非线性传播的各个方面。本提案的重点是两个问题,它们突出了几个示例性金融系统中复杂性的几个方面。 我们特别对中央对手方和银行感兴趣。 我们希望研究的复杂性是影响金融系统的各种风险,以及它们之间的(非线性)反馈。 我们解决这些问题的动机是了解和控制金融崩溃的路径。 据推测,监管要求使得金融崩溃的情况很少发生。 在这些与金融崩溃或市场崩溃相对应的罕见配置中,哪些是“最”有可能的? 如何有效地模拟这些场景? 此外,我们能否控制系统并设计合适的市场机制,以便崩溃(如果发生)最有可能以某种“首选”方式发生? 这一分析的一个内在部分是金融体系固有的非合作性质;它们涉及大量代理商,每个代理商都寻求自身利润最大化。 在考虑相关的控制问题时,我们观察到大量的智能体会导致高维问题,而这些问题通常可能很棘手。我们打算研究是否可以采用平均场近似来获得聚合行为的表征。此外,我们的重点是这种结构对罕见事件的影响。 系统不同部分之间的竞争性相互作用意味着系统的行为通常不能仅通过观察系统的一部分来完全理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Sowers其他文献

Using Virtual Reality High Fall-Risk Condition Training to Improve Postural Control Accuracy and Speed
  • DOI:
    10.1016/j.apmr.2019.08.432
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rongyi Sun;Rachneet Kaur;Richard Sowers;Manuel Hernandez
  • 通讯作者:
    Manuel Hernandez

Richard Sowers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Sowers', 18)}}的其他基金

I-Corps: Real-time anxiety detection and modulation using wearables
I-Corps:使用可穿戴设备进行实时焦虑检测和调节
  • 批准号:
    2243335
  • 财政年份:
    2023
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
I-Corps: Data Analytics for Hand-Picked Agriculture
I-Corps:精心挑选的农业数据分析
  • 批准号:
    1748498
  • 财政年份:
    2017
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Signatures and Barcodes: Data-driven Understanding of Transportation System Performance during Extreme Events
签名和条形码:数据驱动的对极端事件期间运输系统性能的理解
  • 批准号:
    1727785
  • 财政年份:
    2017
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
AMC-SS, Collaborative Research: Explorations in Stochastic Moving Boundary Value Problems
AMC-SS,协作研究:随机移动边值问题的探索
  • 批准号:
    0705260
  • 财政年份:
    2007
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
32nd Conference on Stochastic Processes and their Applications
第32届随机过程及其应用会议
  • 批准号:
    0703239
  • 财政年份:
    2007
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
AMC-SS: Noise-Induced Transitions in Multiscale Systems
AMC-SS:多尺度系统中噪声引起的转变
  • 批准号:
    0604249
  • 财政年份:
    2006
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Random Perturbations of Complex Dynamical Systems
复杂动力系统的随机扰动
  • 批准号:
    0305925
  • 财政年份:
    2003
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Stochastic Averaging: Geometry and Stratified Spaces
随机平均:几何和分层空间
  • 批准号:
    0071484
  • 财政年份:
    2000
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9305975
  • 财政年份:
    1993
  • 资助金额:
    $ 31万
  • 项目类别:
    Fellowship Award

相似国自然基金

Rare Metals(稀有金属(英文版))
  • 批准号:
    51224002
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

The Rare Earth Potential of the Gascoyne Region of Western Australia
西澳大利亚加斯科因地区的稀土潜力
  • 批准号:
    LP230100173
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Linkage Projects
BRC-BIO: The origin and genetic makeup of rare plants: bridging micro- and macroevolution in the California Floristic Province
BRC-BIO:稀有植物的起源和基因组成:连接加州植物省的微观和宏观进化
  • 批准号:
    2334849
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
SBIR Phase I: Sustainable Rare Earth Element Production from Coal Combustion Byproducts
SBIR 第一阶段:利用煤炭燃烧副产品可持续生产稀土元素
  • 批准号:
    2335379
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
SUstainable EuroPean Rare Earth Elements production value chain from priMary Ores
来自原矿的可持续欧洲稀土元素生产价值链
  • 批准号:
    10091569
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    EU-Funded
Rare Event Simulation: Protecting vital infrastructure from flood extremes
罕见事件模拟:保护重要基础设施免受极端洪水影响
  • 批准号:
    DP240101365
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Discovery Projects
Future Fashion Landscapes: Fostering biodiversity through collaborations between farmers, designers, and processors of native and rare breed wool
未来时尚景观:通过农民、设计师和本地及稀有品种羊毛加工商之间的合作促进生物多样性
  • 批准号:
    AH/Z505365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Research Grant
NIRG: Evaluation of interventions with rare events: methods for parallel cluster randomised trials and stepped-wedge cluster randomised trials
NIRG:罕见事件干预措施的评估:平行整群随机试验和阶梯楔形整群随机试验的方法
  • 批准号:
    MR/X029492/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Research Grant
CAREER: Magnetically Integrated Electric Drive with Rare-Earth-Free Motors
职业:采用无稀土电机的磁集成电驱动器
  • 批准号:
    2338755
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
Workshop: Collaborative Strategies for Predicting and Measuring Uncertainty in Rare Occurrences in Civil and Environmental Systems; Golden, Colorado; 6-8 November 2024
研讨会:预测和测量民用和环境系统中罕见事件的不确定性的协作策略;
  • 批准号:
    2400107
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research:Theory-guided Design and Discovery of Rare-Earth Element 2D Transition Metal Carbides MXenes (RE-MXenes)
合作研究:稀土元素二维过渡金属碳化物MXenes(RE-MXenes)的理论指导设计与发现
  • 批准号:
    2419026
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了