CMG: Nonlinear Elastic-Wave Inverse Scattering and Tomography - from Cracks to Mantle Convection

CMG:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流

基本信息

  • 批准号:
    1025259
  • 负责人:
  • 金额:
    $ 17.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

Knowing Earth?s internal structure on a range of length scales is necessary to understand natural hazards (earthquakes, volcanoes), exploit subsurface energy resources, and understand the long-term geological evolution of our planet. Seismic waves emitted by earthquakes or man-made sources represent the most direct and precise probes of Earth?s interior. Traditionally, seismologists recognize two types of non-destructive method for determining medium properties from measurements made at its boundary. Tomography (which in concept is similar to medical computer-aided tomography) aims to constrain smooth medium variations from transmitted seismic waves, whereas inverse scattering aims to constrain non-smooth heterogeneity (edges, interfaces) from reflected, refracted, or diffracted waves. These methods have revolutionized our understanding of Earth?s structure but have not yet reached their full potential. An important issue is that for practical and technical reasons they used to be treated separately. Indeed, (local) linearization and the use of asymptotic theory prevent internally consistent interpretation of seismic data with different (but complementary) sampling properties. Building on expertise in seismology, inverse theory, and microlocal and harmonic analysis, the proposed research aims to develop a unified theoretical framework for (nonlinear, full wave) inversion and medium reconstruction, where tomography and inverse scattering are no longer treated separately. The new methods can lead to more accurate seismic exploration for oil and gas but the main geoscience motivation is to study the crust and mantle beneath North America with data provided by USArray, the seismology component of EarthScope, a nationwide, multi-year geosciences project funded by NSF.From a mathematical sciences perspective the challenge is to develop a unified analysis of and computationally efficient algorithms for full wave inversion of the elastic wave equation and Cauchy or partial boundary data (here, broad-band waveforms measured at Earth?s surface). The proposed research extends the PIs previous research on inverse scattering and multi-scale tomography; it aims to transition from inverse scattering with the (asymptotic) generalized Radon transform to a full waveform analogue, to develop a nonlinear illumination correction and partial reconstruction approach and a (complementary) analyses for the (transient) time-domain formulation and (multi-)frequency (?fixed energy?) formulation, and to study wave constituents associated with (multiple) scattering off complex structures (edges, for example). In view of application to USArray data we aim to generalize receiver function analysis, characterize sharp transitions (such as the crust-mantle interface, the lithosphere-asthenosphere boundary, and interfaces associated with subduction zones), and develop nonlinear reflection and transmission tomography to constrain physical properties of the mantle beneath North America.
了解地球?在一定长度范围内的地球内部结构对于了解自然灾害(地震、火山)、开发地下能源以及了解地球的长期地质演化是必要的。 由地震或人为源发出的地震波代表了对地球最直接和最精确的探测。的内部。传统上,地震学家认识到两种类型的非破坏性的方法来确定介质的性质,从测量其边界。层析成像(在概念上类似于医学计算机辅助层析成像)旨在限制透射地震波的平滑介质变化,而逆散射旨在限制反射,折射或衍射波的非平滑异质性(边缘,界面)。这些方法彻底改变了我们对地球的认识?的结构,但尚未充分发挥其潜力。一个重要的问题是,由于实际和技术原因,它们过去被分开处理。 事实上,(局部)线性化和渐近理论的使用,防止内部一致的解释地震数据与不同的(但互补的)采样特性。 基于地震学,逆理论,微局部和谐波分析的专业知识,拟议的研究旨在为(非线性,全波)反演和介质重建开发一个统一的理论框架,其中层析成像和逆散射不再单独处理。 新方法可以导致更准确的石油和天然气地震勘探,但主要的地球科学动机是研究北美地壳和地幔下的数据由USAray,地震组成部分的地球范围,一个全国性的,多的从数学科学的角度来看,挑战是开发一个统一的分析和计算效率高的算法,用于全波反演,弹性波方程和柯西或部分边界数据(这里,在地球上测量的宽带波形?s表面)。 该研究扩展了PI以前在逆散射和多尺度层析成像方面的研究,旨在从逆散射与(渐近)广义Radon变换过渡到全波形模拟,开发非线性照明校正和部分重建方法,并对(瞬态)时域公式和(多)频率(?固定能源?)公式,并研究与复杂结构(例如边缘)的(多次)散射相关的波成分。 鉴于应用USAray数据,我们的目标是概括接收函数分析,表征急剧的过渡(如壳幔界面,岩石圈-软流圈边界,与俯冲带相关的接口),并开发非线性反射和透射层析成像,以约束北美地幔下的物理性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andras Vasy其他文献

Andras Vasy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andras Vasy', 18)}}的其他基金

Microlocal Analysis and Geometry
微局部分析和几何
  • 批准号:
    2247004
  • 财政年份:
    2023
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Conference: Geometric Applications of Microlocal Analysis
会议:微局部分析的几何应用
  • 批准号:
    2210936
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Microlocal Analysis and Applications
微局部分析及应用
  • 批准号:
    1953987
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Microlocal Analysis of Linear and Nonlinear Problems
线性和非线性问题的微局部分析
  • 批准号:
    1664683
  • 财政年份:
    2017
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Continuing Grant
Conference Proposal: Modern Theory of Wave Equations Program at the Erwin Schrodinger Institute
会议提案:埃尔文·薛定谔研究所的现代波动方程理论项目
  • 批准号:
    1465291
  • 财政年份:
    2015
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Microlocal analysis for waves and inverse problems
波和反问题的微局域分析
  • 批准号:
    1361432
  • 财政年份:
    2014
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Continuing Grant
Conference on Microlocal Methods in Mathematical Physics and Global Analysis
数学物理和全局分析中的微局域方法会议
  • 批准号:
    1067924
  • 财政年份:
    2011
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Propagation Phenomena for Waves and Scattering
波和散射的传播现象
  • 批准号:
    1068742
  • 财政年份:
    2011
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Continuing Grant
Geometric Analysis -- A Conference in Luminy, France, Winter 2011
几何分析——2011 年冬季在法国 Luminy 举行的会议
  • 批准号:
    1062288
  • 财政年份:
    2010
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Wave propagation: singularities and asymptotics
波传播:奇点和渐进
  • 批准号:
    0801226
  • 财政年份:
    2008
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Guiding and Confining Nonlinear Elastic Waves in Moiré Metastructures
职业:在莫尔超结构中引导和限制非线性弹性波
  • 批准号:
    2238072
  • 财政年份:
    2023
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    RGPIN-2020-06814
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    RGPIN-2020-06814
  • 财政年份:
    2021
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Bulk and Interfacial Waves in Fiber-Reinforced Elastic Solids
纤维增强弹性固体中的非线性体波和界面波
  • 批准号:
    564738-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 17.39万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Self-Centering Pendulum Shear Walls in Buildings via Nonlinear Elastic Kinematics
合作研究:通过非线性弹性运动学实现建筑物中的自定心摆剪力墙
  • 批准号:
    2035690
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Standard Grant
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    RGPIN-2020-06814
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear model reduction for bifurcation analysis of complex aero-elastic models
用于复杂气动弹性模型分岔分析的非线性模型简化
  • 批准号:
    2434237
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Studentship
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
  • 批准号:
    DGECR-2020-00515
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Launch Supplement
Nonlinear Elastic Wave Propagation Behavior in Fiber Reinforced Composites Based on Resonant Scattering Theory
基于共振散射理论的纤维增强复合材料非线性弹性波传播行为
  • 批准号:
    19K14842
  • 财政年份:
    2019
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nonlinear Vibration and Stability Analysis of Nano-scale Elastic Beam-type Structures
纳米级弹性梁型结构的非线性振动与稳定性分析
  • 批准号:
    RGPIN-2014-06242
  • 财政年份:
    2018
  • 资助金额:
    $ 17.39万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了