CMG: Nonlinear Elastic-Wave Inverse Scattering and Tomography - from Cracks to Mantle Convection
CMG:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
基本信息
- 批准号:1025259
- 负责人:
- 金额:$ 17.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Knowing Earth?s internal structure on a range of length scales is necessary to understand natural hazards (earthquakes, volcanoes), exploit subsurface energy resources, and understand the long-term geological evolution of our planet. Seismic waves emitted by earthquakes or man-made sources represent the most direct and precise probes of Earth?s interior. Traditionally, seismologists recognize two types of non-destructive method for determining medium properties from measurements made at its boundary. Tomography (which in concept is similar to medical computer-aided tomography) aims to constrain smooth medium variations from transmitted seismic waves, whereas inverse scattering aims to constrain non-smooth heterogeneity (edges, interfaces) from reflected, refracted, or diffracted waves. These methods have revolutionized our understanding of Earth?s structure but have not yet reached their full potential. An important issue is that for practical and technical reasons they used to be treated separately. Indeed, (local) linearization and the use of asymptotic theory prevent internally consistent interpretation of seismic data with different (but complementary) sampling properties. Building on expertise in seismology, inverse theory, and microlocal and harmonic analysis, the proposed research aims to develop a unified theoretical framework for (nonlinear, full wave) inversion and medium reconstruction, where tomography and inverse scattering are no longer treated separately. The new methods can lead to more accurate seismic exploration for oil and gas but the main geoscience motivation is to study the crust and mantle beneath North America with data provided by USArray, the seismology component of EarthScope, a nationwide, multi-year geosciences project funded by NSF.From a mathematical sciences perspective the challenge is to develop a unified analysis of and computationally efficient algorithms for full wave inversion of the elastic wave equation and Cauchy or partial boundary data (here, broad-band waveforms measured at Earth?s surface). The proposed research extends the PIs previous research on inverse scattering and multi-scale tomography; it aims to transition from inverse scattering with the (asymptotic) generalized Radon transform to a full waveform analogue, to develop a nonlinear illumination correction and partial reconstruction approach and a (complementary) analyses for the (transient) time-domain formulation and (multi-)frequency (?fixed energy?) formulation, and to study wave constituents associated with (multiple) scattering off complex structures (edges, for example). In view of application to USArray data we aim to generalize receiver function analysis, characterize sharp transitions (such as the crust-mantle interface, the lithosphere-asthenosphere boundary, and interfaces associated with subduction zones), and develop nonlinear reflection and transmission tomography to constrain physical properties of the mantle beneath North America.
了解地球的内部结构在一系列长度范围内是必要的,以了解自然危害(地震,火山),利用地下能量资源并了解我们星球的长期地质演变。 地震或人造资源发出的地震波代表了地球内部最直接,最精确的探针。传统上,地震学家认识到两种类型的非破坏性方法,用于从其边界上进行的测量结果确定培养基。断层扫描(概念上类似于医学计算机辅助断层扫描)旨在限制传播地震波的光滑介质变化,而逆散射旨在限制反射,折射或衍射波的非平滑异质性(边缘,接口)。这些方法彻底改变了我们对地球结构的理解,但尚未发挥其全部潜力。一个重要的问题是,出于实际和技术原因,它们曾经分别接受治疗。 的确,(局部)线性化和渐近理论的使用可以防止内部一致的地震数据(具有不同(但互补)的采样特性)。 在地震学,逆理论以及微局部和谐波分析方面的专业知识的基础上,拟议的研究旨在为(非线性,全波)倒置和中等重建建立一个统一的理论框架,在这种框架中不再单独处理断层扫描和逆散射。 新方法可以导致对石油和天然气的更准确的地震探索,但主要的地球科学动机是通过USArray提供的数据(Earthscope的地震学组成部分,全国性的,多年的地球科学项目)对NSF.FROM A ALLOVER的全国性分析和计算,并在北美的北美下面研究了地壳和套筒,并在数学上的范围进行了整体分析。弹性波方程和cauchy或部分边界数据的反转(在这里,在地球表面测得的宽带波形)。 拟议的研究扩展了PIS先前关于反散射和多尺度断层扫描的研究。它的目的是通过(渐近)广义ra转换为完整波形模拟,开发非线性照明校正和部分重建方法,以及(互补的)分析((瞬态)时间段的公式和(多)频率(?固定能量(?固定的)频率(?)与构造(多个散射)相关(多个),(互补的)分析(互补)分析(互补)分析(互补)分析(互补)分析(互补)分析(互补)(互补的)分析(多个)散射(多)。 鉴于应用于USARRAY数据,我们旨在概括接收器功能分析,表征尖锐的过渡(例如地壳垂体界面,岩石圈 - 心圈边界以及与俯冲区域相关的接口),并发展非线性反射和透射术,以构造北部北部壁炉的物理特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andras Vasy其他文献
Andras Vasy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andras Vasy', 18)}}的其他基金
Conference: Geometric Applications of Microlocal Analysis
会议:微局部分析的几何应用
- 批准号:
2210936 - 财政年份:2022
- 资助金额:
$ 17.39万 - 项目类别:
Standard Grant
Microlocal Analysis of Linear and Nonlinear Problems
线性和非线性问题的微局部分析
- 批准号:
1664683 - 财政年份:2017
- 资助金额:
$ 17.39万 - 项目类别:
Continuing Grant
Conference Proposal: Modern Theory of Wave Equations Program at the Erwin Schrodinger Institute
会议提案:埃尔文·薛定谔研究所的现代波动方程理论项目
- 批准号:
1465291 - 财政年份:2015
- 资助金额:
$ 17.39万 - 项目类别:
Standard Grant
Microlocal analysis for waves and inverse problems
波和反问题的微局域分析
- 批准号:
1361432 - 财政年份:2014
- 资助金额:
$ 17.39万 - 项目类别:
Continuing Grant
Conference on Microlocal Methods in Mathematical Physics and Global Analysis
数学物理和全局分析中的微局域方法会议
- 批准号:
1067924 - 财政年份:2011
- 资助金额:
$ 17.39万 - 项目类别:
Standard Grant
Propagation Phenomena for Waves and Scattering
波和散射的传播现象
- 批准号:
1068742 - 财政年份:2011
- 资助金额:
$ 17.39万 - 项目类别:
Continuing Grant
Geometric Analysis -- A Conference in Luminy, France, Winter 2011
几何分析——2011 年冬季在法国 Luminy 举行的会议
- 批准号:
1062288 - 财政年份:2010
- 资助金额:
$ 17.39万 - 项目类别:
Standard Grant
Wave propagation: singularities and asymptotics
波传播:奇点和渐进
- 批准号:
0801226 - 财政年份:2008
- 资助金额:
$ 17.39万 - 项目类别:
Standard Grant
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深层碳酸盐岩酸蚀裂缝中反应-非线性两相流界面演化机制研究
- 批准号:52304047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑多相多介质耦合作用的地下水位变化场地非线性地震响应机理研究
- 批准号:52378474
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于气体多通腔多模非线性效应的大能量可调谐光源的研究
- 批准号:12374318
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
少层硒化镓晶体辅助微结构光纤的超宽带二阶非线性效应及应用
- 批准号:62375223
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
CAREER: Guiding and Confining Nonlinear Elastic Waves in Moiré Metastructures
职业:在莫尔超结构中引导和限制非线性弹性波
- 批准号:
2238072 - 财政年份:2023
- 资助金额:
$ 17.39万 - 项目类别:
Standard Grant
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
- 批准号:
RGPIN-2020-06814 - 财政年份:2022
- 资助金额:
$ 17.39万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Elastic Waves in Passive and Active Periodic Media
无源和有源周期性介质中的非线性弹性波
- 批准号:
RGPIN-2020-06814 - 财政年份:2021
- 资助金额:
$ 17.39万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear Bulk and Interfacial Waves in Fiber-Reinforced Elastic Solids
纤维增强弹性固体中的非线性体波和界面波
- 批准号:
564738-2021 - 财政年份:2021
- 资助金额:
$ 17.39万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Self-Centering Pendulum Shear Walls in Buildings via Nonlinear Elastic Kinematics
合作研究:通过非线性弹性运动学实现建筑物中的自定心摆剪力墙
- 批准号:
2035690 - 财政年份:2020
- 资助金额:
$ 17.39万 - 项目类别:
Standard Grant