Propagation Phenomena for Waves and Scattering

波和散射的传播现象

基本信息

  • 批准号:
    1068742
  • 负责人:
  • 金额:
    $ 34.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The object of the proposed research is the study of propagation phenomena in different contexts. Topics in the proposal encompass such diverse areas as the study of diffractive phenomena for the wave equation at edges, as well as the asymptotic behavior of waves on curved space-times, such as in general relativity. The project will employ geometric microlocal, or phase space, techniques to explore new problems in these areas. Some of these techniques are constructive, such as the proposed construction of the forward fundamental solution and the scattering operator on a class of asymptotically Anti-de Sitter (AdS) spaces, while others rely on phase-space energy estimates, such as the microlocal positive commutator estimates that are expected to be of use in the study of the asymptotic behavior of the wave equation on curved space-times (such as Kerr-de Sitter space, describing rotating black holes), of wave equations with global conditions replacing initial conditions, and in wave propagation on curved space-times with asymptotic edges and cusps. Even elliptic problems, which correspond to stationary (no propagation) problems, can sometimes benefit from a different point of view: recent work on the meromorphic continuation of the resolvent of the Laplacian on asymptotically hyperbolic spaces, and on its high energy behavior, provides an example.Wave propagation is ubiquitous in the physical world, with electromagnetic waves (e.g., light waves) being one of the most prevalent examples. A typical question is how waves interact with structures such as edges, generalizing the well-known law of reflection from mirrors. Scattering theory is another subject governed by propagation phenomena. For instance, scattering phenomena enter into the description of quantum waves on large scales, mathematically modelled as "infinity." As propagation phenomena are ubiquitous in the physical world, their more precise understanding has many potential applications. A concrete physical application that is expected to be of interest is developing scattering theory (i.e., investigating how light waves or quantum particles behave globally, in the context of curved space-times, which give a description of our universe in the framework of general relativity). Some of the techniques involved are also expected to benefit the understanding of imaging problems, for instance, in the geophysical context.
本研究的目的是研究不同背景下的传播现象。提案中的主题涵盖了不同的领域,如边缘波动方程的衍射现象的研究,以及波在弯曲时空上的渐近行为,如广义相对论。该项目将采用几何微局部或相空间技术来探索这些领域的新问题。其中一些技术是建设性的,如在一类渐近反德西特(AdS)空间上提出的正基本解和散射算子的构造,而其他技术则依赖于相空间能量估计,如微局部正换易子估计,预计将用于研究弯曲时空(如克尔-德西特空间,描述旋转黑洞)上波动方程的渐近行为。用全局条件代替初始条件的波动方程,以及具有渐近边和尖的弯曲时空中的波传播。即使是与平稳(无传播)问题相对应的椭圆型问题,有时也可以从不同的观点中获益:最近关于渐近双曲空间上拉普拉斯算子解的亚纯延拓及其高能量行为的研究,提供了一个例子。波的传播在物理世界中无处不在,电磁波(如光波)是最普遍的例子之一。一个典型的问题是,波如何与边缘等结构相互作用,从而推广了众所周知的镜子反射定律。散射理论是另一门受传播现象支配的学科。例如,散射现象进入大尺度量子波的描述,数学模型为“无限”。由于传播现象在物理世界中无处不在,对其更精确的理解具有许多潜在的应用。一个具体的物理应用是发展散射理论(即,研究光波或量子粒子在弯曲时空背景下的整体行为,这在广义相对论的框架下描述了我们的宇宙)。所涉及的一些技术也有望有助于理解成像问题,例如在地球物理方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andras Vasy其他文献

Andras Vasy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andras Vasy', 18)}}的其他基金

Microlocal Analysis and Geometry
微局部分析和几何
  • 批准号:
    2247004
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Conference: Geometric Applications of Microlocal Analysis
会议:微局部分析的几何应用
  • 批准号:
    2210936
  • 财政年份:
    2022
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Microlocal Analysis and Applications
微局部分析及应用
  • 批准号:
    1953987
  • 财政年份:
    2020
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Microlocal Analysis of Linear and Nonlinear Problems
线性和非线性问题的微局部分析
  • 批准号:
    1664683
  • 财政年份:
    2017
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
Conference Proposal: Modern Theory of Wave Equations Program at the Erwin Schrodinger Institute
会议提案:埃尔文·薛定谔研究所的现代波动方程理论项目
  • 批准号:
    1465291
  • 财政年份:
    2015
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Microlocal analysis for waves and inverse problems
波和反问题的微局域分析
  • 批准号:
    1361432
  • 财政年份:
    2014
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
Conference on Microlocal Methods in Mathematical Physics and Global Analysis
数学物理和全局分析中的微局域方法会议
  • 批准号:
    1067924
  • 财政年份:
    2011
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
CMG: Nonlinear Elastic-Wave Inverse Scattering and Tomography - from Cracks to Mantle Convection
CMG:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
  • 批准号:
    1025259
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
Geometric Analysis -- A Conference in Luminy, France, Winter 2011
几何分析——2011 年冬季在法国 Luminy 举行的会议
  • 批准号:
    1062288
  • 财政年份:
    2010
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Wave propagation: singularities and asymptotics
波传播:奇点和渐进
  • 批准号:
    0801226
  • 财政年份:
    2008
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Emergent Phenomena in Nonlinear Dispersive Waves
会议:非线性色散波中的涌现现象
  • 批准号:
    2339212
  • 财政年份:
    2024
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Development of numerical methods for solving unsteady shock waves stably and correctly and its application to shock wave interaction phenomena
稳定正确求解非定常冲击波数值方法的发展及其在冲击波相互作用现象中的应用
  • 批准号:
    23KJ0981
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Numerical Analysis of Noise Reduction of Supersonic Jet by Micro Disturbance Using Beat Phenomena between Unstable Waves
利用不稳定波间拍频现象微扰动降低超音速射流噪声的数值分析
  • 批准号:
    22K03902
  • 财政年份:
    2022
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding of propagation phenomena of guided waves at various defects and estimation of defect shapes
了解导波在各种缺陷处的传播现象并估计缺陷形状
  • 批准号:
    25420021
  • 财政年份:
    2013
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Maritime Security Sensor Network Based on Ultra-Wideband Electromagnetic Waves Forward Scattering phenomena
基于超宽带电磁波前向散射现象的海上安全传感器网络
  • 批准号:
    EP/J006610/1
  • 财政年份:
    2012
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Research Grant
Maritime Security Sensor Network Based on Ultra-Wideband Electromagnetic Waves Forward Scattering phenomena
基于超宽带电磁波前向散射现象的海上安全传感器网络
  • 批准号:
    EP/J008419/1
  • 财政年份:
    2012
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Research Grant
WAVES 2011: International Conference on Linear and Nonlinear Wave Phenomena
WAVES 2011:线性和非线性波现象国际会议
  • 批准号:
    1108902
  • 财政年份:
    2011
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
Stability of nonlinear dispersive waves and wave collapse phenomena
非线性色散波的稳定性和波崩塌现象
  • 批准号:
    0906099
  • 财政年份:
    2009
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
CEDAR: Low and Mid Latitude Imager Observations of Waves and Wave-Induced Phenomena in the Airglow
CEDAR:低纬度和中纬度成像仪对气辉中波浪和波浪诱发现象的观测
  • 批准号:
    0737557
  • 财政年份:
    2008
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Continuing Grant
Fundamental Research on the accuracy augmentation of structural surveys using elastic waves through elastic scattering phenomena
通过弹性散射现象利用弹性波提高结构测量精度的基础研究
  • 批准号:
    19560811
  • 财政年份:
    2007
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了