Conference: Geometric Applications of Microlocal Analysis
会议:微局部分析的几何应用
基本信息
- 批准号:2210936
- 负责人:
- 金额:$ 3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
On September 2-5, 2022, Stanford University will host a conference on recent advances in geometric analysis, with the title `Geometric Applications of Microlocal Analysis'. This conference will feature some of the most renowned researchers in the interplay between geometry and partial differential equations who will present the state of the art of the various topics covered. The potential benefits for young researchers and researchers in nearby fields will be central; it is expected that these researchers will discover important techniques and perspectives. The project will support the transportation and accommodation of speakers and participants to the conference, with emphasis on graduate students, postdoctoral fellows, and junior faculty from American universities.Within the general field of geometric analysis, the conference will focus on microlocal analysis, gauge theory, conformal invariants, analysis on non-compact manifolds including the study of index theory and de Rham cohomologies as well as wave propagation, and the study of geometric flows. These topics are chosen because of many recent advances and numerous open frontiers, and because in spite of many connections between them, there is sufficient distance between these topics that collaborative projects, benefiting from different points of view, are particularly fruitful. A key goal of the conference is to show young researchers, such as graduate students, postdoctoral fellows, and junior faculty, the variety of areas in which microlocal analysis is a useful tool, with the expectation that they might be able to start collaborative projects in these areas. The organizers will also strive to ensure the diversity of the participants to the maximum extent possible. The web page of the conference is https://web.stanford.edu/~andras/microloc-conf-22.htmlThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2022年9月2日至5日,斯坦福大学将主办一次关于几何分析最新进展的会议,主题为‘微局部分析的几何应用’。这次会议将以几何和偏微分方程之间相互作用的一些最著名的研究人员为特色,他们将介绍所涵盖的各种主题的最新技术。年轻研究人员和附近领域的研究人员的潜在利益将是核心;预计这些研究人员将发现重要的技术和观点。该项目将支持会议发言人和与会者的交通和住宿,重点是研究生、博士后研究员和来自美国大学的初级教师。在几何分析的一般领域,会议将集中于微局部分析、规范理论、共形不变量、非紧致流形上的分析,包括指数理论和De Rham上同调以及波传播的研究,以及几何流的研究。之所以选择这些主题,是因为最近取得的许多进展和许多开放的前沿,而且尽管它们之间有许多联系,但这些主题之间有足够的距离,因此受益于不同观点的合作项目特别富有成果。会议的一个关键目标是向年轻的研究人员,如研究生、博士后研究员和初级教师展示微局部分析是有用工具的各种领域,并期望他们能够在这些领域开始合作项目。主办方还将努力最大限度地确保参赛者的多样性。会议的网页是https://web.stanford.edu/~andras/microloc-conf-22.htmlThis奖,反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andras Vasy其他文献
Andras Vasy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andras Vasy', 18)}}的其他基金
Microlocal Analysis of Linear and Nonlinear Problems
线性和非线性问题的微局部分析
- 批准号:
1664683 - 财政年份:2017
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Conference Proposal: Modern Theory of Wave Equations Program at the Erwin Schrodinger Institute
会议提案:埃尔文·薛定谔研究所的现代波动方程理论项目
- 批准号:
1465291 - 财政年份:2015
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Microlocal analysis for waves and inverse problems
波和反问题的微局域分析
- 批准号:
1361432 - 财政年份:2014
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Conference on Microlocal Methods in Mathematical Physics and Global Analysis
数学物理和全局分析中的微局域方法会议
- 批准号:
1067924 - 财政年份:2011
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Propagation Phenomena for Waves and Scattering
波和散射的传播现象
- 批准号:
1068742 - 财政年份:2011
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Geometric Analysis -- A Conference in Luminy, France, Winter 2011
几何分析——2011 年冬季在法国 Luminy 举行的会议
- 批准号:
1062288 - 财政年份:2010
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
CMG: Nonlinear Elastic-Wave Inverse Scattering and Tomography - from Cracks to Mantle Convection
CMG:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
- 批准号:
1025259 - 财政年份:2010
- 资助金额:
$ 3万 - 项目类别:
Continuing Grant
Wave propagation: singularities and asymptotics
波传播:奇点和渐进
- 批准号:
0801226 - 财政年份:2008
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
- 批准号:
2403833 - 财政年份:2024
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Partial Differential Equations, geometric aspects and applications
偏微分方程、几何方面和应用
- 批准号:
DE230100954 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Discovery Early Career Researcher Award
Conference: Geometric flows and applications
会议:几何流及应用
- 批准号:
2316597 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Conference: Geometric and Asymptotic Group Theory with Applications 2023
会议:几何和渐近群理论及其应用 2023
- 批准号:
2311110 - 财政年份:2023
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Asymptotic Geometric Analysis, Random Matrices, and Applications
渐近几何分析、随机矩阵及其应用
- 批准号:
RGPIN-2022-03483 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
- 批准号:
2154637 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant
Analytic and geometric aspects of convexity theory with applications
凸性理论的解析和几何方面及其应用
- 批准号:
RGPIN-2018-05159 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Functional, geometric and matrix inequalities and applications
函数、几何和矩阵不等式及其应用
- 批准号:
RGPIN-2021-03584 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Geometric questions in the theory of Shimura varieties and applications
志村品种理论中的几何问题及应用
- 批准号:
RGPIN-2019-03909 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Discovery Grants Program - Individual
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133851 - 财政年份:2022
- 资助金额:
$ 3万 - 项目类别:
Standard Grant