Microlocal Analysis of Linear and Nonlinear Problems
线性和非线性问题的微局部分析
基本信息
- 批准号:1664683
- 负责人:
- 金额:$ 20.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops and applies tools from the field of mathematics known as microlocal analysis. Roughly speaking, microlocal analysis devises methods to keep track of the position and frequency (or momentum) of waves (or, more generally, functions) simultaneously. The project's applications are to wave propagation and other related phenomena, as well as to inverse problems for determining a function from integrals along curves (the X-ray transform) and related problems for determining the structure of a material from boundary measurements. Although the project itself concerns their mathematical theory, the problems under investigation are closely connected to the physical world. Wave propagation is ubiquitous in nature, with electromagnetic waves, such as light, being one of the most prevalent examples. The theory of general relativity is another important physical example via (the recently detected) gravitational waves. Scattering theory for quantum particles (such as protons and electrons) is another subject governed by microlocal analysis, aspects of which enter into the description of both quantum waves at large distances and semiclassical phenomena (those in which Planck's constant can be regarded as small, often the case in chemistry). The inverse problems under study are also of broad significance. One application of the theory under development here is the determination of an unknown variable sound speed in an object via the measurement of travel times of waves, which for instance is relevant to imaging to interior of Earth using the travel times of earthquake waves.Parts of this project describe the long-time or far-field behavior of waves on curved space-times. Physically these arise in scattering theory and general relativity, including electromagnetic waves on a curved background. The microlocal approach to analysis on these spaces has made breakthroughs possible in work on linear and nonlinear problems on asymptotically (real) hyperbolic spaces as well as on Kerr-de Sitter space. The projects here aim to improve the understanding of Lorentzian scattering spaces, which include asymptotically Minkowski spaces (asymptotically flat spaces, which our universe approximates, at least locally, even if there is a small positive cosmological constant). Other projects concern the behavior of waves at edges -- specifically, the diffraction of the Rayleigh (surface) waves of elasticity. Yet another main area is inverse problems, building on recently-developed tools for spatially localized inversion of the geodesic X-ray transform, including the solution of fixed conformal class boundary rigidity: under suitable assumptions, one can determine a variable sound speed inside an object from the travel times of waves between points on the surface. The parts of the project in this area aim to extend the foregoing result to tensors, which describe anisotropic sound speeds in an appropriate sense; namely, the project will investigate boundary rigidity, for example, recovering a Riemannian metric from its boundary distance function.
该项目开发并应用了被称为微局部分析的数学领域工具。粗略地说,微局部分析设计了同时跟踪波(或更一般地说,函数)的位置和频率(或动量)的方法。该项目的应用包括波传播和其他相关现象,以及通过沿曲线的积分(x射线变换)确定函数的逆问题,以及通过边界测量确定材料结构的相关问题。虽然这个项目本身涉及他们的数学理论,但所研究的问题与物理世界密切相关。波的传播在自然界中无处不在,电磁波,如光,是最普遍的例子之一。广义相对论是另一个重要的物理例子,通过(最近发现的)引力波。量子粒子(如质子和电子)的散射理论是另一个由微局部分析支配的学科,微局部分析的各个方面可以用于描述远距离的量子波和半经典现象(其中普朗克常数可以被认为很小,通常在化学中)。所研究的逆问题也具有广泛的意义。这里正在开发的理论的一个应用是通过测量波的传播时间来确定物体中未知的可变声速,例如,这与利用地震波的传播时间成像地球内部有关。这个项目的一部分描述了波在弯曲时空上的长时间或远场行为。物理上,这些出现在散射理论和广义相对论中,包括弯曲背景上的电磁波。微局部分析方法在渐近(实)双曲空间和Kerr-de - Sitter空间上的线性和非线性问题的研究中取得了突破。这里的项目旨在提高对洛伦兹散射空间的理解,其中包括渐近闵可夫斯基空间(渐近平坦空间,我们的宇宙至少在局部近似,即使有一个小的正宇宙常数)。其他项目关注边缘波的行为——特别是弹性瑞利(表面)波的衍射。另一个主要领域是逆问题,建立在最近开发的用于测地线x射线变换的空间局部反演的工具上,包括固定共形类边界刚性的解决方案:在适当的假设下,人们可以从表面上点之间的波的传播时间确定物体内部的可变声速。该领域的部分项目旨在将上述结果扩展到张量,张量在适当的意义上描述各向异性声速;也就是说,该项目将研究边界刚性,例如,从其边界距离函数中恢复黎曼度量。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Essential self-adjointness of the wave operator and the limiting absorption principle on Lorentzian scattering spaces
波算子的本质自伴性与洛伦兹散射空间上的极限吸收原理
- DOI:10.4171/jst/301
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Vasy, András
- 通讯作者:Vasy, András
Stability of Minkowski space and polyhomogeneity of the metric
- DOI:10.1007/s40818-020-0077-0
- 发表时间:2020-06-01
- 期刊:
- 影响因子:2.8
- 作者:Hintz, Peter;Vasy, Andras
- 通讯作者:Vasy, Andras
Recovery of Material Parameters in Transversely Isotropic Media
- DOI:10.1007/s00205-019-01421-5
- 发表时间:2019-07
- 期刊:
- 影响因子:2.5
- 作者:Maarten V. de Hoop;G. Uhlmann;A. Vasy
- 通讯作者:Maarten V. de Hoop;G. Uhlmann;A. Vasy
Asymptotic Behavior of Cosmologies with $$\Lambda >0$$ in $$2+1$$ Dimensions
$$Lambda >0$$ 在 $$2 1$$ 维度中的宇宙论的渐近行为
- DOI:10.1007/s00220-020-03706-3
- 发表时间:2020
- 期刊:
- 影响因子:2.4
- 作者:Creminelli, Paolo;Senatore, Leonardo;Vasy, András
- 通讯作者:Vasy, András
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andras Vasy其他文献
Andras Vasy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andras Vasy', 18)}}的其他基金
Conference: Geometric Applications of Microlocal Analysis
会议:微局部分析的几何应用
- 批准号:
2210936 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
Conference Proposal: Modern Theory of Wave Equations Program at the Erwin Schrodinger Institute
会议提案:埃尔文·薛定谔研究所的现代波动方程理论项目
- 批准号:
1465291 - 财政年份:2015
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
Microlocal analysis for waves and inverse problems
波和反问题的微局域分析
- 批准号:
1361432 - 财政年份:2014
- 资助金额:
$ 20.4万 - 项目类别:
Continuing Grant
Conference on Microlocal Methods in Mathematical Physics and Global Analysis
数学物理和全局分析中的微局域方法会议
- 批准号:
1067924 - 财政年份:2011
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
Propagation Phenomena for Waves and Scattering
波和散射的传播现象
- 批准号:
1068742 - 财政年份:2011
- 资助金额:
$ 20.4万 - 项目类别:
Continuing Grant
Geometric Analysis -- A Conference in Luminy, France, Winter 2011
几何分析——2011 年冬季在法国 Luminy 举行的会议
- 批准号:
1062288 - 财政年份:2010
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
CMG: Nonlinear Elastic-Wave Inverse Scattering and Tomography - from Cracks to Mantle Convection
CMG:非线性弹性波逆散射和断层扫描 - 从裂缝到地幔对流
- 批准号:
1025259 - 财政年份:2010
- 资助金额:
$ 20.4万 - 项目类别:
Continuing Grant
Wave propagation: singularities and asymptotics
波传播:奇点和渐进
- 批准号:
0801226 - 财政年份:2008
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Structural Performance Analysis of a Floating Green Energy Storage Subjected to Non-Linear Loads
非线性载荷下浮动绿色储能结构性能分析
- 批准号:
2902122 - 财政年份:2024
- 资助金额:
$ 20.4万 - 项目类别:
Studentship
Linear On-Wafer Vector-Network-Analysis
线性晶圆上矢量网络分析
- 批准号:
508759090 - 财政年份:2023
- 资助金额:
$ 20.4万 - 项目类别:
Major Research Instrumentation
Non-linear large signal network analysis
非线性大信号网络分析
- 批准号:
512477106 - 财政年份:2023
- 资助金额:
$ 20.4万 - 项目类别:
Major Research Instrumentation
Non-linear vector network analysis
非线性矢量网络分析
- 批准号:
512476737 - 财政年份:2023
- 资助金额:
$ 20.4万 - 项目类别:
Major Research Instrumentation
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152704 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant
Generalized linear mixed models for copula-based bivariate survival analysis
基于联结的二元生存分析的广义线性混合模型
- 批准号:
22K11948 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-destructive evaluation of 3D plastic strain and residual stress distributions induced by earthquakes using non-linear inverse analysis
使用非线性反演分析对地震引起的 3D 塑性应变和残余应力分布进行无损评估
- 批准号:
22K03831 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
- 批准号:
RGPIN-2018-05052 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152687 - 财政年份:2022
- 资助金额:
$ 20.4万 - 项目类别:
Standard Grant