All-Electric Semiconductor Spin Valve
全电动半导体旋转阀
基本信息
- 批准号:1028423
- 负责人:
- 金额:$ 34.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A concerted experimental and theoretical research program is proposed to develop an all-electric, lateral spin valve with a large (~ 30) On/Off conductance ratio. The device will be made from gallium arsenide and will not use any ferromagnetic electrodes or external magnetic field to flip the electron spin. It consists of two quantum point contacts in series separated by a short one-dimensional conduction channel of length smaller than the spin coherence length of gallium arsenide at the temperature of operation. Each quantum point contact acts as all-electric spin polarizer or detector and can provide or filter almost completely spin-polarized current. Non-equilibrium Green¡¦s function simulation of model devices indicate that spin valve devices based on gallium arsenide quantum point contacts on length scale of tens of nanometers, achievable with modern lithographic technology, can yield a large enough spin splitting to make feasible operation at ambient temperature with large On/Off conductance ratio.Intellectual meritThe creation, manipulation, and detection of spin-polarized currents by purely electrical means are challenging goals in semiconductor spintronics. Spin valves so far studied have used ferromagnetic electrodes or material embedded into device architecture for spin polarization and detection and an external magnetic field to flip the spin. Very recently, we have demonstrated that quantum point contact made from the semiconductor indium arsenide can be used to generate strongly spin polarized current by purely electrical means when its confining potential is made highly asymmetric by gate bias voltages. The spin valves based on gallium arsenide quantum point contacts we will develop in this project are unique in two respects. First, all-electric quantum point contacts will be used as spin polarizer and detector. Second, a one-dimensional transport channel is used that offers a number of advantages over two-dimensional channels used so far. Finally, because of the long (tens of micrometers) spin coherence length of gallium arsenide relative to that (tens of nanometers) of indium arsenide at room temperature, operation of the gallium arsenide spin valves at ambient temperature is feasible. If successful, this project will be ground-breaking. Broader ImpactsThe success of this project is expected to stimulate the development of all-electric, ultra high-speed, energy-efficient spin valve devices that can be used for high-speed digital information processing and eventually in solid-state quantum computation based on spin qubits. This project, if successful, will be a major milestone and a breakthrough in semiconductor spintronics. A goal of this project is to develop the first simulator based on non-equilibrium Green¡¦s function technique to model spin transport in nanoscale devices and make it available to the scientific community at large via the nanoHUB website. Both graduate and undergraduate students will participate in this research effort. This project will specifically engage undergraduate physics/engineering students of Xavier University and the University of Cincinnati to cutting edge physics research and advanced techniques not accessible in traditional undergraduate programs and courses.
提出了一个协调一致的实验和理论研究计划,以发展一个全电动,横向自旋阀与大(~ 30)开/关电导比。该装置将由砷化镓制成,不使用任何铁磁电极或外部磁场来翻转电子自旋。它由两个串联的量子点接触组成,它们被一个短的一维导电通道隔开,该通道的长度小于砷化镓在工作温度下的自旋相干长度。每个量子点接触充当全电自旋极化器或检测器,并且可以提供或过滤几乎完全自旋极化的电流。非平衡绿色…模型器件的β s函数模拟表明,利用现代光刻技术可以实现几十纳米尺度的砷化镓量子点接触自旋阀器件,其自旋分裂足够大,可以在室温下实现大的开/关电导比的工作。和通过纯电手段检测自旋极化电流是半导体自旋电子学中具有挑战性的目标。到目前为止,研究的自旋阀使用铁磁电极或嵌入到设备架构中的材料进行自旋极化和检测,并使用外部磁场来翻转自旋。最近,我们已经证明,由半导体砷化铟制成的量子点接触可以用来产生强自旋极化电流时,其限制电位是由栅极偏置电压高度不对称的纯电气手段。我们将在这个项目中开发的基于砷化镓量子点接触的自旋阀在两个方面是独一无二的。首先,全电量子点接触将被用作自旋极化器和探测器。其次,使用一维传输信道,其提供了许多优于迄今为止使用的二维信道的优点。 最后,由于室温下砷化镓的自旋相干长度相对于砷化铟的自旋相干长度(几十纳米)长(几十微米),所以砷化镓自旋阀在环境温度下的操作是可行的。如果成功的话,这个项目将是开创性的。更广泛的影响该项目的成功有望刺激全电动,超高速,节能的自旋阀器件的发展,可用于高速数字信息处理,并最终用于基于自旋量子位的固态量子计算。这个项目如果成功,将是半导体自旋电子学的一个重大里程碑和突破。该项目的目标之一是开发第一个基于非平衡绿色函数技术的模拟器,以模拟纳米器件中的自旋输运,并通过nanoHUB网站向科学界提供。 研究生和本科生都将参与这项研究工作。该项目将专门吸引泽维尔大学和辛辛那提大学的本科物理/工程专业的学生,以进行传统本科课程和课程无法获得的前沿物理研究和先进技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Cahay其他文献
Closer to an all-electric device
更接近全电动设备
- DOI:
10.1038/nnano.2014.305 - 发表时间:
2014-12-22 - 期刊:
- 影响因子:34.900
- 作者:
Marc Cahay - 通讯作者:
Marc Cahay
Immune to local heating
对局部加热有免疫力
- DOI:
10.1038/nnano.2014.4 - 发表时间:
2014-02-05 - 期刊:
- 影响因子:34.900
- 作者:
Marc Cahay - 通讯作者:
Marc Cahay
Conductance of an array of elastic scatterers: A scattering-matrix approach.
弹性散射体阵列的电导:散射矩阵方法。
- DOI:
- 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Marc Cahay;Michael McLennan;Suman Datta - 通讯作者:
Suman Datta
Erratum to: Field Emission from Laser Cut CNT Fibers and Films–CORRIGENDUM
- DOI:
10.1557/jmr.2014.10 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:2.900
- 作者:
Steven B. Fairchild;John S. Bulmer;Martin Sparkes;John Boeckl;Marc Cahay;Tyson Back;P. Terrence Murray;Gregg Gruen;Matthew Lange;Nathaniel P. Lockwood;Francisco Orozco;William O’Neill;Catharina Paukner;Krzysztof K. K. Koziol;Gregory Kozlowski - 通讯作者:
Gregory Kozlowski
Marc Cahay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc Cahay', 18)}}的其他基金
32nd International Vacuum Nanoelectronics and 12th International Vacuum Electron Sources Conferences, To Be Held in Cincinnati, Ohio, July 22-26, 2019
第32届国际真空纳米电子学暨第12届国际真空电子源会议将于2019年7月22-26日在俄亥俄州辛辛那提举行
- 批准号:
1901936 - 财政年份:2019
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
CNIC: U.S.-Swedish Engineering Research on Spin Blockaded Transport and Onset of Wigner Crystallization in All Electric Spin Valves
CNIC:美国-瑞典关于所有电动自旋阀中自旋封锁输运和维格纳结晶开始的工程研究
- 批准号:
1341789 - 财政年份:2013
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
NER: Nanoscale Organic Spintronics
NER:纳米级有机自旋电子学
- 批准号:
0608854 - 财政年份:2006
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
Collaborative GOALI Proposal: Self-Assembled Arrays of Rare-earth Sulfide Nanowires for Traveling Wave Tube Applications
合作 GOALI 提案:用于行波管应用的稀土硫化物纳米线自组装阵列
- 批准号:
0524166 - 财政年份:2005
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
First International Symposium on Cold Cathodes, 198th Meeting of the Electrochemical Society, October 22-27, 2000, in Phoenix, Arizona.
第一届国际冷阴极研讨会,电化学学会第 198 次会议,2000 年 10 月 22-27 日,亚利桑那州菲尼克斯。
- 批准号:
0002801 - 财政年份:2000
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
The Use of Surfaces of Rare-Earth Elements to Achieve Durable Negative Electron Affinity Cold Cathodes, Photocathodes, and Polarized Electron Sources
利用稀土元素表面实现耐用的负电子亲和力冷阴极、光电阴极和极化电子源
- 批准号:
9906053 - 财政年份:1999
- 资助金额:
$ 34.49万 - 项目类别:
Continuing Grant
International Symposium on Advanced Luminescent Materials and Quantum Confinement; Honolulu, Hawaii, October 17-22, 1999
先进发光材料与量子限制国际研讨会;
- 批准号:
9907465 - 财政年份:1999
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
Simulation of New Solid State Cold Cathode Emitters Using Current Carrying Thin Films
使用载流薄膜模拟新型固态冷阴极发射极
- 批准号:
9632511 - 财政年份:1997
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
Fourth International Symposium on Quantum Confinement: Nanoscale Materials, Devices, and Systems in Montreal, May 4-9, 1997
第四届量子限制国际研讨会:纳米材料、设备和系统,蒙特利尔,1997 年 5 月 4-9 日
- 批准号:
9705093 - 财政年份:1997
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
Theoretical and Experimental Investigation of InP-Based PNP Heterojunction Bipolar Transistors
InP基PNP异质结双极晶体管的理论与实验研究
- 批准号:
9525942 - 财政年份:1996
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
相似海外基金
Investigation of spin-charge interconversion phenomena and realization of semiconductor-based spin logic devices
自旋电荷相互转换现象的研究和基于半导体的自旋逻辑器件的实现
- 批准号:
23KF0150 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Creation of innovative quantum repeater technology for semiconductor spin qubits based on photon-spin quantum state conversion
创建基于光子自旋量子态转换的半导体自旋量子位创新量子中继器技术
- 批准号:
23H05458 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Exploring spin coherence engineering in group IV semiconductor quantum structures
探索 IV 族半导体量子结构中的自旋相干工程
- 批准号:
23H05455 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Semiconductor-based room temperature optical spintronics using novel spin-optical devices
使用新型自旋光学器件的基于半导体的室温光学自旋电子学
- 批准号:
23H01459 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realistic machine learning based ultra fast simulator for semiconductor spin qubit devices
用于半导体自旋量子位器件的基于真实机器学习的超快速模拟器
- 批准号:
10031865 - 财政年份:2022
- 资助金额:
$ 34.49万 - 项目类别:
Collaborative R&D
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2022
- 资助金额:
$ 34.49万 - 项目类别:
Discovery Grants Program - Individual
Semiconductor electron-nuclear spin qubits with optical access
具有光学访问功能的半导体电子-核自旋量子位
- 批准号:
2212017 - 财政年份:2022
- 资助金额:
$ 34.49万 - 项目类别:
Continuing Grant
Development of spin injection technology through energy-band symmetry matching in semiconductor-based spin devices
通过半导体自旋器件中的能带对称匹配开发自旋注入技术
- 批准号:
21K18719 - 财政年份:2021
- 资助金额:
$ 34.49万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Experimental study of hole spin qubits in gated semiconductor devices for quantum processing and communication applications
用于量子处理和通信应用的门控半导体器件中空穴自旋量子位的实验研究
- 批准号:
RGPIN-2019-04089 - 财政年份:2021
- 资助金额:
$ 34.49万 - 项目类别:
Discovery Grants Program - Individual
Design and Synthesis of Magnetic Semiconductor Based on pi-Conjugated Polymers Containing Spin Localized Nitroxide Unit
基于含自旋局域氮氧单元的π共轭聚合物的磁性半导体的设计与合成
- 批准号:
20K05609 - 财政年份:2020
- 资助金额:
$ 34.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)