Quantitative Understanding of Atomic Wear Using Accelerated Molecular Simulation

使用加速分子模拟定量理解原子磨损

基本信息

  • 批准号:
    1031408
  • 负责人:
  • 金额:
    $ 29.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

The goal of this proposed research is to develop a molecular-level understanding and a quantitative description of atomic wear during single-asperity sliding. Moving surfaces in contact can produce wear that shortens device lifetime and lowers energy efficiency. Molecular level simulations will be employed to understand how an amorphous silica tip blunts on a moving counter-surface under low loads. This simulation setup resembles the scanning of a silicon tip on polymer surfaces for high-density thermo-mechanical data storage, during which the native oxide layer of the silicon tip wears off. A novel accelerated molecular dynamics algorithm will be utilized to accelerate rare debris-generating events during sliding thus approach the experimental time scales. By simulating tip-sliding at various speeds, loads, contact areas and temperatures, the quantitative relation between the wear rate and loading conditions will be obtained. The applicability of the Archard's linear wear law and the nonlinear bond rupture model in the atomic wear regime will be critically evaluated.This research will enrich the fundamental knowledge on wear at the nanoscale, which is crucial for devising guidelines of operation conditions and estimating components lifetime for nanodevices with moving contacts, such as scanning probe-based memory storage, nanolithography as well as nano electromechanical systems. The computational platform developed here can also be used to investigate multi-asperity wear and tribochemical effects in the future. The educational components include outreach activities for high school students interested in science and engineering through the New Visions: Math, Engineering, Technology & Science (METS) program; curriculum development of a Modeling of Materials course at RPI; a continual effort on improving an open-source visualization software SimRePlay (www.simreplay.org) for the scientific community.
这项拟议研究的目标是从分子水平上理解和定量描述单凸体滑动过程中的原子磨损。接触时移动表面会产生磨损,从而缩短器件寿命并降低能效。分子水平的模拟将被用来理解无定形二氧化硅针尖在低负载下如何在移动的反表面上钝化。这种模拟设置类似于在高密度热机械数据存储的聚合物表面上扫描硅尖,在此期间硅尖的自然氧化层磨损。一种新的加速分子动力学算法将被用来加速滑动过程中罕见的碎片产生事件,从而接近实验时间尺度。通过模拟不同速度、载荷、接触面积和温度下的尖端滑动,得到磨损率与载荷条件之间的定量关系。对Archard的线性磨损定律和非线性键断裂模型在原子磨损区域的适用性进行了严格的评估,这项研究将丰富纳米级磨损的基础知识,这对于设计基于扫描探针的存储器存储、纳米光刻以及纳米机电系统等具有移动接触的纳米器件的操作条件指南和估计元件寿命至关重要。本文开发的计算平台还可用于研究多粗糙表面的磨损和摩擦化学效应。教育部分包括通过新视野:数学、工程、技术和科学(METS)方案为对科学和工程感兴趣的高中生开展外联活动;为RPI的材料建模课程编制课程;为科学界不断改进开源可视化软件SimRePlay(www.simreplay.org)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yunfeng Shi其他文献

Topological defects in nanoporous carbon
纳米多孔碳的拓扑缺陷
  • DOI:
    10.1016/j.carbon.2013.04.013
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Xi Mi;Yunfeng Shi
  • 通讯作者:
    Yunfeng Shi
On the existence of Sobolev quasi-periodic solutions of multidimensional nonlinear beam equation
Absence of eigenvalues of analytic quasi-periodic Schrödinger operators on R^d
R^d 上解析准周期薛定谔算子的特征值不存在
Information Technology Adoption and Procedural Performance in Health Care
医疗保健中的信息技术采用和程序执行
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunfeng Shi
  • 通讯作者:
    Yunfeng Shi
Electronic Health Records and Patient Activation - Their Interactive Role in Medication Adherence
电子健康记录和患者激活——它们在药物依从性中的互动作用
  • DOI:
    10.1007/978-3-319-29175-8_21
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunfeng Shi;Veronica Fuentes;M. McHugh;J. Greene;Nina Verevkina;L. Casalino;S. Shortell
  • 通讯作者:
    S. Shortell

Yunfeng Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yunfeng Shi', 18)}}的其他基金

Designing Tough Composite NanoFibers using Brittle Glasses
使用易碎玻璃设计坚韧的复合纳米纤维
  • 批准号:
    2015557
  • 财政年份:
    2021
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Understanding Intrinsic Ductility in Metallic Glasses
了解金属玻璃的固有延展性
  • 批准号:
    1207439
  • 财政年份:
    2012
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Active Self-assembly Driven by Chemistry: Enhanced Kinetics, Reduced Errors, Novel Patterns and Adaptive Nanostructures
化学驱动的主动自组装:增强动力学、减少错误、新颖模式和自适应纳米结构
  • 批准号:
    0933583
  • 财政年份:
    2009
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
  • 批准号:
    2340085
  • 财政年份:
    2024
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
  • 批准号:
    2350199
  • 财政年份:
    2024
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304852
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
  • 批准号:
    2238516
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304854
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
  • 批准号:
    2304853
  • 财政年份:
    2023
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Self-limited etching for atomic scale surface engineering of metals: understanding and design
金属原子级表面工程的自限蚀刻:理解和设计
  • 批准号:
    2212981
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
Understanding 2D material memristors by atomic resolution imaging
通过原子分辨率成像了解二维材料忆阻器
  • 批准号:
    2737050
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Studentship
RII Track-4:NSF: Atomic-Scale Understanding of the Self-Healing Mechanisms of Ionic Polymers
RII Track-4:NSF:离子聚合物自我修复机制的原子尺度理解
  • 批准号:
    2132055
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Standard Grant
CAREER: Atomic scale understanding of the doping incorporation and transport properties in ultrawide band gap semiconductors
职业:从原子尺度理解超宽带隙半导体的掺杂掺入和输运特性
  • 批准号:
    2145091
  • 财政年份:
    2022
  • 资助金额:
    $ 29.51万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了