Analyzing the Impacts of Non-Gaussian Errors in Gaussian Data Assimilation Systems
分析高斯数据同化系统中非高斯误差的影响
基本信息
- 批准号:1038790
- 负责人:
- 金额:$ 59.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The basis for most of the world's operational and research variational data assimilation (DA) is that all errors are Gaussian distributed. For synoptic-scale weather systems this assumption is a good approximation, however even at these large scales there some variables (e.g., positive-definite quantities such as relative humidity) cannot be properly characterized by assumed Gaussian error distributions. The impact of an imposed negative value for a positive-definite variable such as moisture is that an operational system DA system could fail to converge or otherwise yield an unstable numerical forecast or an unphysical model state. This Gaussian assumption is also present in retrieval systems that are based upon a maximum likelihood estimation (MLE) Bayesian-type approach. In some other Bayesian systems the moisture variable is assumed to be lognormally distributed and so the retrieved variable is the natural logarithm of the moisture variable. Both approaches introduce a bias into the analysis by finding the incorrect statistic to describe the probabilistic behavior of the random variable. In this project an alternative approach for non-Gaussian variables that combines a lognormal distribution with a Gaussian distribution, referred to as a mixed distribution, will be applied and evaluated. This mixed distribution allows for the retrieval and assimilation of Gaussian- and lognormally-distributed variables simultaneously. The mixed approach is different to the other two approaches in that it is finding the analysis mode with the correct covariances between the random variables, and not the mode of the best Gaussian approximation or the median of the lognormal distribution.In the first stage of this effort, methods for determining where one can and cannot impose a Gaussian assumption for humidity within DA schemes, as well to quantify the impacts of such assumptions on retrieved quantities, will be developed. The second stage will investigate the impacts of assimilating retrieved data from the Gaussian assumption approach against the mixed distribution approach into a larger 3D- or 4D-VAR (variationally-based) approach as appropriate to the particular model system being evaluated [e.g., the NSF/NCAR-supported Weather Forecasting and Research (WRF) DA system]. The intellectual merit of this work will trace to the ability to better observe and assimilate moisture fields and develop an improved understanding of their interactions with other model-prognostic fields for a variety of dimensions of atmospheric prediction: synoptic, mesoscale and cloud resolving. Anticipated Broader Impacts of this effort will come through the ability to exert carefully motivated changes in DA schemes employed in larger numerical weather prediction systems, which would in-turn be expected to foster improved predictions of severe and/or extreme weather events. Broader impacts through education will occur through the mentorship and early-career development of a supported postdoctoral research associate, who will be trained in non-Gaussian DA methods as well as gain experience with retrievals and near-operational large DA systems.
世界上大多数的业务和研究变分资料同化(DA)的基础是,所有的误差是高斯分布。 对于天气尺度的天气系统,这个假设是一个很好的近似,然而,即使在这些大尺度上,也有一些变量(例如,正定量(例如相对湿度)不能通过假定的高斯误差分布来适当地表征。 对于正定变量(如湿度)施加负值的影响是,运行系统DA系统可能无法收敛或产生不稳定的数值预报或非物理模型状态。 这种高斯假设也存在于基于最大似然估计(MLE)贝叶斯型方法的检索系统中。 在其他一些贝叶斯系统中,水分变量被假设为对数正态分布,因此检索的变量是水分变量的自然对数。 这两种方法都通过寻找不正确的统计量来描述随机变量的概率行为,从而在分析中引入偏倚。 在本项目中,将应用和评估一种将对数正态分布与高斯分布相结合的非高斯变量的替代方法,称为混合分布。 这种混合分布允许同时检索和同化高斯和对数正态分布的变量。 混合方法与其他两种方法的不同之处在于,它是找到具有随机变量之间的正确协方差的分析模式,而不是最佳高斯近似或对数正态分布的中值的模式。在这项工作的第一阶段,确定在DA方案中可以和不可以对湿度施加高斯假设的方法,以及量化这些假设对检索数量的影响。 第二阶段将研究将高斯假设方法的检索数据与混合分布方法同化为适合于正在评估的特定模型系统的更大的3D或4D-VAR(基于变分)方法的影响[例如,NSF/NCAR支持的天气预报和研究(WRF)DA系统。 这项工作的智力价值将追溯到更好地观测和同化湿度场的能力,并发展更好地了解它们与其他模式预报场的相互作用,用于各种大气预测维度:天气学,中尺度和云解析。 这一努力的预期更广泛的影响将来自于对大型数值天气预报系统中采用的DA方案进行精心激励的改变的能力,这反过来有望促进对严重和/或极端天气事件的更好预测。 通过教育产生更广泛的影响将通过一个支持的博士后研究助理的导师和早期职业发展来实现,他将接受非高斯DA方法的培训,并获得检索和近操作大型DA系统的经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Fletcher其他文献
Annalisa Camporeale, Francesca Marino*, XXX* di Heymans, Patrick
安娜丽莎·坎波雷亚莱 (Annalisa Camporeale)、弗朗西斯卡·马里诺 (Francesca Marino)*、帕特里克·海曼斯 (XXX* di Heymans)
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Annalisa Camporeale;F. Marino;Anna;Paolo Carai;Sara Fornero;Steven Fletcher;Brent D. G. Page;Patrick Gunning;M. Forni;Roberto Chiarle;Mara;Morello;O. Jensen;R. Levi;Stephane Heymans;Valeria Poli - 通讯作者:
Valeria Poli
Computational control of gene expression in individual yeast using reactive microscopy
- DOI:
10.1016/j.bpj.2022.11.1562 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Zachary Fox;Steven Fletcher;Jakob Ruess;Gregory Batt - 通讯作者:
Gregory Batt
A novel BRD4 inhibitor CA2 suppresses MM cell proliferation in an orthotopic myeloma mouse model.
一种新型 BRD4 抑制剂 CA2 可抑制原位骨髓瘤小鼠模型中的 MM 细胞增殖。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Natsuki Imaysohi;Makoto Yoshioka;Susumu Nakata;Jay Chauhan;Yoko Kado;Yuki Toda;Steven Fletcher;Jeffrey Strovel;Kazuyuki Takata;and Eishi Ashihara. - 通讯作者:
and Eishi Ashihara.
The polypharmacy combination of the BCL-2 inhibitor venetoclax (VEN) and the FLT3 inhibitor gilteritinib (GIL) is more active in acute myeloid leukemia cells than novel polypharmacologic BCL-2/FLT3 VEN–GIL hybrid single-molecule inhibitors
BCL-2 抑制剂维奈托克(VEN)和 FLT3 抑制剂吉列替尼(GIL)的多药联合治疗在急性髓系白血病细胞中比新型多药理学 BCL-2/FLT3 VEN–GIL 杂合单分子抑制剂更具活性。
- DOI:
10.1016/j.ejmech.2024.117190 - 发表时间:
2025-03-05 - 期刊:
- 影响因子:5.900
- 作者:
Christopher C. Goodis;Christian Eberly;Alexandria M. Chan;MinJung Kim;Brandon D. Lowe;Curt I. Civin;Steven Fletcher - 通讯作者:
Steven Fletcher
造血器悪性腫瘍に対するWnt/β-cateninシグナルを標的とした創薬研究
针对血液恶性肿瘤 Wnt/β-catenin 信号的药物发现研究
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Natsuki Imaysohi;Makoto Yoshioka;Susumu Nakata;Jay Chauhan;Yoko Kado;Yuki Toda;Steven Fletcher;Jeffrey Strovel;Kazuyuki Takata;and Eishi Ashihara.;芦原英司 - 通讯作者:
芦原英司
Steven Fletcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Fletcher', 18)}}的其他基金
Maker Education and Community Building as Tools to Recruit, Develop, and Retain STEM Teachers
创客教育和社区建设作为招募、培养和留住 STEM 教师的工具
- 批准号:
1950312 - 财政年份:2020
- 资助金额:
$ 59.61万 - 项目类别:
Continuing Grant
Improving Weather Forecasting through non-Gaussian Data Assimilation with Machine Learning
通过机器学习的非高斯数据同化改进天气预报
- 批准号:
2033405 - 财政年份:2020
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
The Eighth International Symposium on Data Assimilation (ISDA); Fort Collins, Colorado; June 8-12, 2020
第八届资料同化国际研讨会(ISDA);
- 批准号:
2011670 - 财政年份:2020
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
Establishing Links between Atmospheric Dynamics and Non-Gaussian Distributions and Quantifying Their Effects on Numerical Weather Prediction
建立大气动力学和非高斯分布之间的联系并量化它们对数值天气预报的影响
- 批准号:
1738206 - 财政年份:2017
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
Noyce Phase II Monitoring & Evaluation at St. Edward's University
诺伊斯二期监测
- 批准号:
1439817 - 财政年份:2014
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
The St. Edward's University Robert Noyce Teacher Scholarship Program
圣爱德华大学罗伯特·诺伊斯教师奖学金计划
- 批准号:
0833123 - 财政年份:2008
- 资助金额:
$ 59.61万 - 项目类别:
Standard Grant
相似国自然基金
IMPACTS站点土壤铝活化机制研究
- 批准号:40273045
- 批准年份:2002
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Assessing the non-local Climate impacts of Tropical deforestation (ACT)
评估热带森林砍伐对非本地气候的影响 (ACT)
- 批准号:
NE/Z00005X/1 - 财政年份:2024
- 资助金额:
$ 59.61万 - 项目类别:
Research Grant
Health effects of low-concentration, non-urban air pollution: health impacts of ship emission controls
低浓度非城市空气污染对健康的影响:船舶排放控制对健康的影响
- 批准号:
23H03158 - 财政年份:2023
- 资助金额:
$ 59.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Impacts of Species-dependent Long Non-coding RNA Expression on Formation of Phenotypic Diversity in Mammalian Cerebral Cortex
物种依赖性长非编码RNA表达对哺乳动物大脑皮层表型多样性形成的影响
- 批准号:
23KJ1627 - 财政年份:2023
- 资助金额:
$ 59.61万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The role of recreational marinas in facilitating the impacts of invasive non-native species.
休闲码头在促进非本地入侵物种影响方面的作用。
- 批准号:
2881448 - 财政年份:2023
- 资助金额:
$ 59.61万 - 项目类别:
Studentship
Impacts of INNS on freshwater ecosystems and ways to mitigate this, such as signal crayfish, mink, or non-native fish
INNS 对淡水生态系统的影响以及减轻影响的方法,例如信号小龙虾、水貂或非本地鱼类
- 批准号:
2887791 - 财政年份:2023
- 资助金额:
$ 59.61万 - 项目类别:
Studentship
Nanoparticles from non-exhaust emissions: lung deposition and potential health impacts
非废气排放中的纳米颗粒:肺部沉积和潜在的健康影响
- 批准号:
2758026 - 财政年份:2022
- 资助金额:
$ 59.61万 - 项目类别:
Studentship
Spread and impacts of non-native Caragana arborescens, an emergent invasive shrub in the prairie region
草原地区新出现的入侵灌木非本地柠条的传播和影响
- 批准号:
571670-2021 - 财政年份:2022
- 资助金额:
$ 59.61万 - 项目类别:
Alliance Grants
Collaborative Research: A qualitative inquiry into sex/gender narratives in undergraduate biology and their impacts on transgender, non-binary, and gender non-conforming students
合作研究:对本科生物学中的性/性别叙事及其对跨性别、非二元和性别不合格学生的影响进行定性调查
- 批准号:
2201809 - 财政年份:2022
- 资助金额:
$ 59.61万 - 项目类别:
Continuing Grant
Non-CO2 Forcers and their Climate, Weather, Air Quality and Health Impacts (FOCI)
非二氧化碳驱动因素及其气候、天气、空气质量和健康影响 (FOCI)
- 批准号:
10040465 - 财政年份:2022
- 资助金额:
$ 59.61万 - 项目类别:
EU-Funded
Mechanistic and Metabolic Impacts of Non-Nutritive Sweeteners
非营养性甜味剂的机制和代谢影响
- 批准号:
RGPIN-2018-04238 - 财政年份:2022
- 资助金额:
$ 59.61万 - 项目类别:
Discovery Grants Program - Individual