ATD: Statistical Methods and Software for Analyzing Massively Parallel Epigenomic Sequencing Data

ATD:用于分析大规模并行表观基因组测序数据的统计方法和软件

基本信息

  • 批准号:
    1042946
  • 负责人:
  • 金额:
    $ 48.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

The dawn of the massively parallel sequencing technology has propelledresearch in epigenetics, from genome-wide methylation profiling,histone modification patterns clustering, to identifying generegulation through spatial interactions. The power of epigeneticshas already been felt, such as its use in making drugs for treatingseveral diseases, but unfortunately, it has also been recognized thatit may be exploited for the bad. The powerful, rapidly acquirable,stable, and heritable features of epigenetic could be a perfect vehiclefor bio-terrorism. The regulatory mechanism of gene expression maybe altered based on the epigenetic principle to create mutant cellswith devastating consequences very quickly. To counter the potentialof such threat, the detection of changes in epigenetic marks is akey issue. This project aims to develop likelihood based as wellas Bayesian methodology, computational algorithms and associatedsoftware for analyzing massively parallel epigenomic sequencing datathat are tangible for detection of biological threats. The focus willbe on chromatin signature and structure analysis to study histonebinding patterns in promoters and enhancers and spatial interactionsbetween promoters and enhancers within a protein complex. Methods andalgorithms developed will be implemented in three software packages:DIME, ChAPE, and BASIC. It is anticipated that the analytical toolsdeveloped will contribute to uncover global host-response epigeneticpatterns.Charles Darwin's publication of "On the origin of species" 150 yearsago has taught us that evolutionary changes take many generationsof natural selection. In recent years, however, a new scientificarea called epigenetics is helping to usher in a paradigm shift. Itis hypothesized, based on amassed scientific evidence, that powerfulenvironmental conditions may leave an imprint on the genetic material,which can lead to passage of new traits in a single generationthrough the epigenetic process. The importance of epigenetics hasbeen recognized in the scientific community, and indeed, epigeneticshas been used for the good, such as its utilization for producing drugsfor treating complex diseases. Unfortunately, it may also be exploitedby bio-terrorists. In other words, gene regulation mechanism may bealtered to create mutant cells, which could pose great threats withdevastating consequence. Anticipating the potential of such type ofthreats, this project proposes statistical methods and computationalalgorithms to analyze epigenetic data from advanced genomic sequencingtechnology to detect mutant cells that may have gone through epigeneticchanges. These tools are anticipated to contribute to early detectionof exposure to potential biowarfare pathogen. This project will alsocontribute to the training of the next generation of researchers ina cutting-edge interdisciplinary research area that fuses knowledgein biology, statistics and computer science.
大规模平行测序技术的出现推动了表观遗传学的研究,从全基因组甲基化分析、组蛋白修饰模式聚类到通过空间相互作用确定基因调控。表观遗传学的力量已经被感受到了,例如它在制造治疗多种疾病的药物中的应用,但不幸的是,它也被认识到可能被利用来做坏事。表观遗传学强大、可快速获得、稳定和可遗传的特征可能是生物恐怖主义的完美工具。基于表观遗传学原理,基因表达的调节机制可能被改变,以非常快地产生具有破坏性后果的突变细胞。为了应对这种潜在的威胁,检测表观遗传标记的变化是一个关键问题。该项目旨在开发基于可能性的贝叶斯方法,计算算法和相关软件,用于分析大规模并行表观基因组测序数据,这些数据对于检测生物威胁是有形的。重点将放在染色质特征和结构分析,以研究启动子和增强子中的组蛋白结合模式以及蛋白质复合物中启动子和增强子之间的空间相互作用。所开发的方法和算法将在三个软件包中实现:DIME、ChAPE和BASIC。可以预见,所开发的分析工具将有助于揭示全球宿主反应的表观遗传模式。查尔斯达尔文在150年前发表的《物种起源》一书告诉我们,进化的变化需要经过许多代的自然选择。然而,近年来,一个名为表观遗传学的新科学领域正在帮助引领一种范式转变。基于积累的科学证据,人们假设,强大的环境条件可能会在遗传物质上留下印记,这可能导致新的性状在一代人中通过表观遗传过程传递。表观遗传学的重要性已经在科学界得到了认可,事实上,表观遗传学已经被用于好的方面,例如利用它来生产治疗复杂疾病的药物。不幸的是,它也可能被生物恐怖分子利用。换句话说,基因调控机制可能被改变,产生突变细胞,这可能造成巨大的威胁和毁灭性的后果。预见到这类威胁的潜在性,该项目提出了统计方法和计算算法来分析来自先进基因组测序技术的表观遗传数据,以检测可能经历了表观遗传变化的突变细胞。预计这些工具将有助于早期发现潜在的生物战病原体。该项目还将有助于培养下一代研究人员,他们将生物学,统计学和计算机科学知识融合在一起。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shili Lin其他文献

COMPARISON OF RESPIRATORY SYMPTOMS AMONG HUMAN IMMUNODEFICIENCY VIRUS-SEROPOSITIVE INDIVIDUALS IN THE PRE- AND POST-HIGHLY ACTIVE ANTIRETROVIRAL THERAPY ERAS
  • DOI:
    10.1378/chest.132.4_meetingabstracts.502a
  • 发表时间:
    2007-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Carmen M. Rosario;Shili Lin;Judy M. Opalek;Janice Drake;Philip T. Diaz
  • 通讯作者:
    Philip T. Diaz
: Providing
: 提供
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph S. Verducci;Vincent F. Melfi;Shili Lin;Zailong Wang;Sashwati Roy;Chandan K. Sen;Microarray
  • 通讯作者:
    Microarray
Information Gain for Genetic Parameter Estimation with Incorporation of Marker Data
结合标记数据的遗传参数估计的信息增益
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Yuqun Luo;Shili Lin
  • 通讯作者:
    Shili Lin
Capturing heterogeneity of covariate effects in hidden subpopulations in the presence of censoring and large number of covariates
在存在审查和大量协变量的情况下捕获隐藏亚群中协变量效应的异质性
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Farhad Shokoohi;Abbas Khalili;M. Asgharian;Shili Lin
  • 通讯作者:
    Shili Lin
Monte Carlo Bayesian methods for quantitative traits
数量性状的蒙特卡罗贝叶斯方法
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shili Lin
  • 通讯作者:
    Shili Lin

Shili Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shili Lin', 18)}}的其他基金

Collaborative Research: ATD: Statistical and Computational Methods for the Analysis of Metagenomic Count Data
合作研究:ATD:宏基因组计数数据分析的统计和计算方法
  • 批准号:
    1220772
  • 财政年份:
    2012
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Continuing Grant
Modeling and Analysis of Genomic Imprinting and Maternal Effects
基因组印记和母体效应的建模和分析
  • 批准号:
    1208968
  • 财政年份:
    2012
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Standard Grant
Statistical Methods for Gene Mapping Based on a Confidence Set Approach
基于置信集方法的基因作图统计方法
  • 批准号:
    0306800
  • 财政年份:
    2003
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Continuing grant
Statistical and Computational Methods in Genetic Analysis
遗传分析中的统计和计算方法
  • 批准号:
    9971770
  • 财政年份:
    1999
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Statistical Methods for Summarizing and Combining Gene Maps"
数学科学:《总结和组合基因图谱的统计方法》
  • 批准号:
    9632117
  • 财政年份:
    1996
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Next-Generation Methods for Statistical Integration of High-Dimensional Disparate Data Sources
职业:高维不同数据源统计集成的下一代方法
  • 批准号:
    2422478
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Continuing Grant
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
  • 批准号:
    MR/Z503770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Research Grant
Modern statistical methods for clustering community ecology data
群落生态数据聚类的现代统计方法
  • 批准号:
    DP240100143
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Discovery Projects
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
  • 批准号:
    2338760
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Continuing Grant
Developing statistical methods for structural change analysis using panel data
使用面板数据开发结构变化分析的统计方法
  • 批准号:
    24K16343
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
  • 批准号:
    23H03353
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Physics Methods in Combinatorics, Algorithms, and Geometry
组合学、算法和几何中的统计物理方法
  • 批准号:
    MR/W007320/2
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Fellowship
Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Standard Grant
Statistical and Psychometric Methods for Measuring the Extent to Which Culturally Responsive Assessments Reduce Cultural Bias
用于衡量文化响应评估减少文化偏见程度的统计和心理测量方法
  • 批准号:
    2243041
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了