Modeling and Analysis of Genomic Imprinting and Maternal Effects
基因组印记和母体效应的建模和分析
基本信息
- 批准号:1208968
- 负责人:
- 金额:$ 22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Genetic imprinting and maternal genotype effects are two epigenetic phenomenon, which may lead to heritable changes in gene expression or cellular phenotype without altering the underlying DNA sequence. These epigenetic factors, also known as parent-of-origin effects, have been increasingly explored for their roles in complex traits as part of a concerted effort to find the "missing heritability". Research on parent-of-origin effects has taken on a new dimension as the next generation sequencing technology becomes wildly available. However, despite the great biological and technological progress and innovation, statistical methods are lacking behind. Most existing methods for studying imprinting/maternal effects are restricted to data from nuclear families. The applicability of such methods is further hindered by the need to make strong but unrealistic assumptions to reduce the number of parameters to avoid overparametrization. In addition, imprinting and maternal effects are confounded and maternal effect is believed to be heterogeneous; all these further complicate modeling and analysis efforts. This project takes up this challenging problem and aims to develop novel statistical and computational models/methods and software for extended families and nuclear families without making the strong but unrealistic assumptions. For nuclear family data from retrospective studies, in addition to case families, the study design also considers controls, which can be in the form of control nuclear families or internal controls from unaffected siblings of case families. This novel design makes it possible to formulate a partial likelihood approach, wherein the likelihood component of interest is free of the nuisance parameters. This circumvents the problem of overparametrization and unrealistic assumptions that plague existing methods. For extended pedigrees from prospective studies, the focus is on the development of a method for incorporating heterogeneous maternal effects and addressing the issue of missing data, which is common for extended pedigrees. Methods proposed will be implemented in software that will be made publicly available.The importance of epigenetics in the twenty first century cannot be overstated. To borrow science writer David Shenk's words, epigenetics is ``perhaps the most important discovery in the science of heredity since the gene''. In this regard, genomic imprinting and maternal effects, two aspects of the epigenetic process, holds important roles as they are essential for normal mammalian growth and development but can also cause devastating diseases and birth defects. Genetic imprinting refers to the epigenetic marking of the parental origin of a gene, which leads to the same DNA sequence being expressed differently depending on whether it is inherited from the mother or from the father. It is well known that Prader?Willi syndrome and Angelman syndrome are genetic disorders involving genetic imprinting. Maternal effect refers to the influence of the prenatal environment provided by a mother, which may arise from the expression levels of some genes carried by the child being altered by the additional genetic materials passed from the mother during pregnancy. Biological research increasingly reveals the presence and importance of maternal effect in many diseases such as childhood cancer and birth defects. This projects aims to develop novel statistical methods and computational software that circumvent difficulties in identifying genes that bear imprinting and/or maternal effects using nuclear and extended family data. The tools developed will be made available to the larger scientific community to aid scientific discoveries and finding treatments for genetic diseases. This project will also contribute to the training of the next generation of researchers in a cutting-edge interdisciplinary research area that fuses knowledge in biology, statistics and computer science.
遗传印记和母体基因型效应是两种表观遗传现象,它们可以在不改变DNA序列的情况下导致基因表达或细胞表型的可遗传变化。这些表观遗传因素,也被称为父母的原产地的影响,已越来越多地探讨其在复杂的性状作为一个共同努力的一部分,以找到“丢失的遗传力”。随着下一代测序技术的广泛应用,对起源父母效应的研究已经进入了一个新的层面。然而,尽管生物和技术取得了巨大的进步和创新,但统计方法却落后于人。 大多数现有的方法研究印迹/母亲的影响仅限于核心家庭的数据。由于需要作出强有力但不切实际的假设来减少参数数目以避免过度参数化,这类方法的适用性进一步受到阻碍。此外,印迹和母体效应是混淆和母体效应被认为是异质性的,所有这些进一步复杂化建模和分析工作。 该项目承担了这一具有挑战性的问题,旨在为大家庭和核心家庭开发新的统计和计算模型/方法和软件,而不会做出强有力但不切实际的假设。对于来自回顾性研究的核心家庭数据,除了病例家庭外,研究设计还考虑了对照,其形式可以是对照核心家庭或病例家庭未受影响兄弟姐妹的内部对照。 这种新颖的设计使得有可能制定部分似然方法,其中感兴趣的似然分量不受干扰参数的影响。 这避免了困扰现有方法的过度参数化和不切实际的假设问题。 对于来自前瞻性研究的扩展家系,重点是开发一种方法,用于纳入异质性母体效应并解决缺失数据的问题,这在扩展家系中很常见。 所提出的方法将在软件中实现,这些软件将公开提供。表观遗传学在二十一世纪的重要性怎么强调都不过分。 借用科学作家大卫申克的话,表观遗传学是"自基因以来遗传科学中最重要的发现“。 在这方面,基因组印记和母体效应,表观遗传过程的两个方面,具有重要的作用,因为它们对于正常哺乳动物的生长和发育是必不可少的,但也可能导致毁灭性的疾病和出生缺陷。遗传印记是指基因的亲本来源的表观遗传标记,其导致相同的DNA序列根据其是从母亲还是从父亲遗传而不同地表达。 众所周知,普拉德?Willi综合征和Angelman综合征是涉及遗传印记的遗传性疾病。母体效应是指母亲提供的产前环境的影响,这种影响可能是由于母亲在怀孕期间传递的额外遗传物质改变了儿童携带的某些基因的表达水平。生物学研究越来越多地揭示了母亲效应在许多疾病中的存在和重要性,如儿童癌症和出生缺陷。该项目的目的是开发新的统计方法和计算软件,以避免在识别基因的困难,承担印迹和/或使用核和大家庭数据的母亲的影响。 开发的工具将提供给更大的科学界,以帮助科学发现和寻找遗传疾病的治疗方法。 该项目还将有助于在融合生物学、统计学和计算机科学知识的前沿跨学科研究领域培训下一代研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shili Lin其他文献
COMPARISON OF RESPIRATORY SYMPTOMS AMONG HUMAN IMMUNODEFICIENCY VIRUS-SEROPOSITIVE INDIVIDUALS IN THE PRE- AND POST-HIGHLY ACTIVE ANTIRETROVIRAL THERAPY ERAS
- DOI:
10.1378/chest.132.4_meetingabstracts.502a - 发表时间:
2007-10-01 - 期刊:
- 影响因子:
- 作者:
Carmen M. Rosario;Shili Lin;Judy M. Opalek;Janice Drake;Philip T. Diaz - 通讯作者:
Philip T. Diaz
: Providing
: 提供
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Joseph S. Verducci;Vincent F. Melfi;Shili Lin;Zailong Wang;Sashwati Roy;Chandan K. Sen;Microarray - 通讯作者:
Microarray
Information Gain for Genetic Parameter Estimation with Incorporation of Marker Data
结合标记数据的遗传参数估计的信息增益
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:1.9
- 作者:
Yuqun Luo;Shili Lin - 通讯作者:
Shili Lin
Logistic Bayesian LASSO for Genetic Association Analysis of Data from Complex Sampling Designs
用于复杂抽样设计数据遗传关联分析的逻辑贝叶斯 LASSO
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.5
- 作者:
Yuan Zhang;J. Hofmann;M. Purdue;Shili Lin;S. Biswas - 通讯作者:
S. Biswas
A Novel Pigeon-Inspired Optimized RBF Model for Parallel Battery Branch Forecasting
一种新型的受鸽子启发的并行电池分支预测优化 RBF 模型
- DOI:
10.1155/2021/8895496 - 发表时间:
2021-02 - 期刊:
- 影响因子:2.3
- 作者:
Yanhui Zhang;Shili Lin;Haiping Ma;Yuanjun Guo;Wei Feng - 通讯作者:
Wei Feng
Shili Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shili Lin', 18)}}的其他基金
Collaborative Research: ATD: Statistical and Computational Methods for the Analysis of Metagenomic Count Data
合作研究:ATD:宏基因组计数数据分析的统计和计算方法
- 批准号:
1220772 - 财政年份:2012
- 资助金额:
$ 22万 - 项目类别:
Continuing Grant
ATD: Statistical Methods and Software for Analyzing Massively Parallel Epigenomic Sequencing Data
ATD:用于分析大规模并行表观基因组测序数据的统计方法和软件
- 批准号:
1042946 - 财政年份:2010
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Statistical Methods for Gene Mapping Based on a Confidence Set Approach
基于置信集方法的基因作图统计方法
- 批准号:
0306800 - 财政年份:2003
- 资助金额:
$ 22万 - 项目类别:
Continuing grant
Statistical and Computational Methods in Genetic Analysis
遗传分析中的统计和计算方法
- 批准号:
9971770 - 财政年份:1999
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
Mathematical Sciences: "Statistical Methods for Summarizing and Combining Gene Maps"
数学科学:《总结和组合基因图谱的统计方法》
- 批准号:
9632117 - 财政年份:1996
- 资助金额:
$ 22万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Genomic analysis of neurodevelopmental disorders, particularly autism spectrum disorders and intellectual disabilities
神经发育障碍,特别是自闭症谱系障碍和智力障碍的基因组分析
- 批准号:
23KJ1112 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Genomic analysis of the Multiplex, Autozygous Populations in Cerebral Palsy (MAP CP) cohort: a focused approach to a complex disease
脑瘫 (MAP CP) 群体中多重自合子群体的基因组分析:针对复杂疾病的集中方法
- 批准号:
10586755 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
- 批准号:
10593480 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Structural Variation analysis of Orofacial Cleft associated genomic regions in African and Asian populations
非洲和亚洲人群口面部裂相关基因组区域的结构变异分析
- 批准号:
10643334 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Genomic Analysis of Aedes aegypti Host Preference Across Urban-Rural Gradients in Africa
非洲城乡梯度埃及伊蚊寄主偏好的基因组分析
- 批准号:
10525807 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Integrative analysis to identify genomic biomarkers in HPV positive oral cancer
综合分析鉴定 HPV 阳性口腔癌的基因组生物标志物
- 批准号:
10666904 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Secure Outsourcing of Genotype Imputation for Privacy-aware Genomic Analysis (RO1HE21)
用于隐私意识基因组分析的基因型插补的安全外包 (RO1HE21)
- 批准号:
10587347 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
NGS genomic analysis and AI image analysis to elucidate refractory factors in eosinophilic rhinosinusitis.
NGS 基因组分析和 AI 图像分析阐明嗜酸性鼻窦炎的难治因素。
- 批准号:
23K08975 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Parent-of-Origin-Aware Genomic Analysis in Hereditary Cancer
遗传性癌症中的起源亲本感知基因组分析
- 批准号:
487635 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:
Operating Grants
Random Field Methods for integrative genomic analysis and high-dimensional risk prediction of congenital heart defects
用于先天性心脏病综合基因组分析和高维风险预测的随机场方法
- 批准号:
10905156 - 财政年份:2023
- 资助金额:
$ 22万 - 项目类别:














{{item.name}}会员




