Statistical Methods for Gene Mapping Based on a Confidence Set Approach
基于置信集方法的基因作图统计方法
基本信息
- 批准号:0306800
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-08-01 至 2007-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Multiple testing is an important but difficult statistical issue in many areas of genetic research. One particular multiple testing problem arises when many markers are screened throughout the genome for their linkage or association with a disease locus, which is the focus of this project, with a broad long-term objective of developing methods applicable in various areas of genetic and genomic research. The main thrust of the proposed approach lies in its formulation of the hypotheses for linkage. Traditionally, hypotheses for linkage are usually set up with the null hypotheses being no linkage and the alternative hypothesis being linkage. In the new formulation, the null and alternative hypotheses are being ``reversed'', with the null hypothesis being tight linkage and the alternative hypothesis being loose linkage or no linkage. Two of the fundamental advantages with this new paradigm are: first, multiplicity adjustment is unnecessary for the number of tests performed in a genome-scan study, and second, the location of a disease gene can be narrowed down to a small genomic region, even at the stage of a preliminary genome-scan study. The first specific aim is to develop methods for constructing confidence sets of markers or confidence regions (intervals) of disease gene locations based on parametric tests of the hypotheses. Single-marker and multiple-marker approaches will be developed for data from general pedigrees. The second specific aim can be viewed as a non-parametric counterpart of the first aim. Methods will be developed for constructing confidence sets/regions based on non-parametric tests using allele-sharing statistics. A wide variety of allele-sharing statistics and data types, ranging from simple structures (sibships, relative pairs) to general pedigrees, will be considered.With the completion of the Human Genome Project, and the development of high throughput technology for genotyping, it is now a routine matter to search up to thousands of genetic markers distributed throughout the genome to look for disease susceptibility genes. This project aims at developing statistical methods suitable for probing each of these markers without compromising the power of finding nearby susceptibility locus. As the number of participating families increases, the rate of falsely implicating a marker not located within a short distance from a disease gene will eventually go down to zero. This would not only increase the chance of successful identification of disease genes, but would also save tremendous resources by reducing the chance of going after "ghost" genes. Thus, the methods developed can be a valuable tool to the gene mapping community. In particular, it is expected that the methods developed in this project will be applied to data from projects, on which the investigator is collaborating with medical doctors and other researchers, on a range of autoimmune diseases, including systemic lupus erythematosus and multiple sclerosis.
在遗传研究的许多领域中,多重测试是一个重要但困难的统计问题。 当在整个基因组中筛选许多标记物与疾病位点的连锁或关联时,就会出现一个特殊的多重测试问题,这是该项目的重点,其广泛的长期目标是开发适用于遗传和基因组研究各个领域的方法。 所提出方法的主旨在于其建立联系假设。 传统上,通常建立关联假设,原假设不存在关联,备择假设存在关联。 在新的表述中,原假设和备择假设被“颠倒”,原假设是紧密联系,备择假设是松散联系或无联系。 这种新范式的两个基本优点是:首先,对于基因组扫描研究中进行的测试数量而言,不需要进行多重性调整;其次,即使在初步基因组扫描研究阶段,疾病基因的位置也可以缩小到一个小的基因组区域。 第一个具体目标是开发基于假设的参数检验构建疾病基因位置标记置信集或置信区域(区间)的方法。 将为来自一般谱系的数据开发单标记和多标记方法。 第二个具体目标可以被视为第一个目标的非参数对应物。 将开发基于使用等位基因共享统计的非参数测试构建置信集/区域的方法。 将考虑各种等位基因共享统计数据和数据类型,从简单的结构(同胞、亲属对)到一般的谱系。随着人类基因组计划的完成,以及基因分型高通量技术的发展,搜索分布在整个基因组中的多达数千个遗传标记以寻找疾病易感基因已成为常规问题。 该项目旨在开发适合探测每个标记的统计方法,而不影响寻找附近易感位点的能力。 随着参与家庭数量的增加,错误暗示不在疾病基因附近的标记的比率最终将降至零。 这不仅会增加成功识别疾病基因的机会,而且还可以通过减少寻找“幽灵”基因的机会来节省大量资源。 因此,所开发的方法可以成为基因图谱界的宝贵工具。 特别是,预计该项目开发的方法将应用于研究人员与医生和其他研究人员合作的一系列自身免疫性疾病项目的数据,包括系统性红斑狼疮和多发性硬化症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shili Lin其他文献
COMPARISON OF RESPIRATORY SYMPTOMS AMONG HUMAN IMMUNODEFICIENCY VIRUS-SEROPOSITIVE INDIVIDUALS IN THE PRE- AND POST-HIGHLY ACTIVE ANTIRETROVIRAL THERAPY ERAS
- DOI:
10.1378/chest.132.4_meetingabstracts.502a - 发表时间:
2007-10-01 - 期刊:
- 影响因子:
- 作者:
Carmen M. Rosario;Shili Lin;Judy M. Opalek;Janice Drake;Philip T. Diaz - 通讯作者:
Philip T. Diaz
: Providing
: 提供
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Joseph S. Verducci;Vincent F. Melfi;Shili Lin;Zailong Wang;Sashwati Roy;Chandan K. Sen;Microarray - 通讯作者:
Microarray
Information Gain for Genetic Parameter Estimation with Incorporation of Marker Data
结合标记数据的遗传参数估计的信息增益
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:1.9
- 作者:
Yuqun Luo;Shili Lin - 通讯作者:
Shili Lin
Capturing heterogeneity of covariate effects in hidden subpopulations in the presence of censoring and large number of covariates
在存在审查和大量协变量的情况下捕获隐藏亚群中协变量效应的异质性
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.8
- 作者:
Farhad Shokoohi;Abbas Khalili;M. Asgharian;Shili Lin - 通讯作者:
Shili Lin
Monte Carlo Bayesian methods for quantitative traits
数量性状的蒙特卡罗贝叶斯方法
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Shili Lin - 通讯作者:
Shili Lin
Shili Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shili Lin', 18)}}的其他基金
Collaborative Research: ATD: Statistical and Computational Methods for the Analysis of Metagenomic Count Data
合作研究:ATD:宏基因组计数数据分析的统计和计算方法
- 批准号:
1220772 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Continuing Grant
Modeling and Analysis of Genomic Imprinting and Maternal Effects
基因组印记和母体效应的建模和分析
- 批准号:
1208968 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
ATD: Statistical Methods and Software for Analyzing Massively Parallel Epigenomic Sequencing Data
ATD:用于分析大规模并行表观基因组测序数据的统计方法和软件
- 批准号:
1042946 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Statistical and Computational Methods in Genetic Analysis
遗传分析中的统计和计算方法
- 批准号:
9971770 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: "Statistical Methods for Summarizing and Combining Gene Maps"
数学科学:《总结和组合基因图谱的统计方法》
- 批准号:
9632117 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical Methods for Inferring Gene-Phenotype Associations Using Omic Data from Gene Knockout and Human Phenotype Studies
使用基因敲除和人类表型研究的组学数据推断基因表型关联的统计方法
- 批准号:
10733165 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Statistical methods for interpretation of genetic variants by gene regulatory networks
通过基因调控网络解释遗传变异的统计方法
- 批准号:
10710939 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Statistical Methods for Gene Regulatory Analysis From Single Cell Genomics Data
单细胞基因组数据基因调控分析的统计方法
- 批准号:
10728206 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Statistical Methods for Gene Regulatory Analysis From Single Cell Genomics Data
单细胞基因组数据基因调控分析的统计方法
- 批准号:
10728209 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Statistical Methods to Study the Genetic Basis and Mechanisms of Trans Gene Regulation
研究转基因调控的遗传基础和机制的统计方法
- 批准号:
10028931 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Statistical Methods to Study the Genetic Basis and Mechanisms of Trans Gene Regulation
研究转基因调控的遗传基础和机制的统计方法
- 批准号:
10627970 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Statistical Methods to Study the Genetic Basis and Mechanisms of Trans Gene Regulation
研究转基因调控的遗传基础和机制的统计方法
- 批准号:
10408741 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Statistical Methods to Study the Genetic Basis and Mechanisms of Trans Gene Regulation
研究转基因调控的遗传基础和机制的统计方法
- 批准号:
10212423 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Statistical methods for gene regulatory analysis and single cell genomics
基因调控分析和单细胞基因组学的统计方法
- 批准号:
10001015 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Statistical methods for gene regulatory analysis and single cell genomics
基因调控分析和单细胞基因组学的统计方法
- 批准号:
10439652 - 财政年份:2019
- 资助金额:
-- - 项目类别:














{{item.name}}会员




