Collaborative Research: ATD: Statistical and Computational Methods for the Analysis of Metagenomic Count Data
合作研究:ATD:宏基因组计数数据分析的统计和计算方法
基本信息
- 批准号:1220772
- 负责人:
- 金额:$ 26.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular genetics, metagenomics, and bioinformatics are central to species/strain identification, virulence determination, pathogenicity characterization, and source attribution. Faster, cheaper sequencing technologies and the ability to sequence uncultured microbes sampled directly from their habitats have enabled the production of massive metagenomic data that are tangible for the detection of biological threats. Distilling meaningful information from millions of new genomic sequences presents serious challenges to bioinformaticians. Even though there have been intensive studies determining the taxonomical content of the sequences, there is a dearth of methods available to study the associations and interactions among metagenomic count data, human genomic data, and clinical outcomes. This project proposes to develop novel parametric and nonparametric methods for bacterial taxa identification, clinical outcome prediction, and bacterial community structure estimation. Taxa selection will be based on changes in both abundance and correlation structures. This project will also develop statistical learning methods for evaluating bacterial community dynamics and causal inference with longitudinal metagenomic data. Efficient computational methods for detecting gene-microbe interactions with integrated metagenomic and genomic data analysis will also be developed. The proposed methodologies and algorithms will be evaluated and validated with various simulation and publicly available metagenomic and genomic data. The threat of terrorists or criminal use of pathogenic organisms and their toxins remains a great concern in the United States. Bioterrorism utilizes viruses, bacteria, fungi and toxins to cause mass sickness or death of people, animals, or agriculture. The analytical methods and software developed in this proposal are anticipated to provide an important bioinformatics resource for researchers who have a goal of using metagenomic data sources for the prevention of bioterrorism and the conviction of bioterrorists. In addition, methods and software developed in this project would be a valuable contribution to environmental and human metagenomic research, which could potentially have a broader impact, especially in public health research, as a myriad of diseases such as obesity, inflammatory bowel diseases, bacterial vaginosis, and cancer all have been associated with shifts in microbiota. Finally, this project will also contribute to the training of graduate students and postdoctoral researchers in a cutting-edge interdisciplinary research area that fuses knowledge of biology, statistics and computer science.
分子遗传学、宏基因组学和生物信息学是物种/菌株鉴定、毒力测定、致病性表征和来源归属的核心。更快、更便宜的测序技术以及直接从其栖息地采样的未培养微生物测序的能力,使得能够产生大量的宏基因组数据,这些数据对于检测生物威胁是有形的。从数以百万计的新基因组序列中提取有意义的信息对生物信息学家提出了严峻的挑战。尽管已经有深入的研究确定序列的分类学内容,但缺乏可用于研究宏基因组计数数据、人类基因组数据和临床结果之间的关联和相互作用的方法。本计画拟发展新的参数与非参数方法,以进行细菌分类群鉴定、临床预后预测与细菌群落结构评估。分类群的选择将基于丰度和相关结构的变化。该项目还将开发统计学习方法,用于评估细菌群落动态和纵向宏基因组数据的因果推断。还将开发利用综合宏基因组和基因组数据分析检测基因-微生物相互作用的有效计算方法。所提出的方法和算法将进行评估和验证各种模拟和公开可用的宏基因组和基因组数据。恐怖分子的威胁或利用病原体及其毒素进行犯罪活动,仍然是美国的一个重大关切。生物恐怖主义利用病毒、细菌、真菌和毒素造成大规模疾病或人、动物或农业死亡。 该提案中开发的分析方法和软件预计将为研究人员提供重要的生物信息学资源,这些研究人员的目标是利用宏基因组数据源预防生物恐怖主义并将生物恐怖分子定罪。此外,该项目中开发的方法和软件将对环境和人类宏基因组研究做出宝贵贡献,这可能会产生更广泛的影响,特别是在公共卫生研究中,因为肥胖、炎症性肠病、细菌性阴道病和癌症等无数疾病都与微生物群的变化有关。最后,该项目还将有助于在融合生物学、统计学和计算机科学知识的尖端跨学科研究领域培养研究生和博士后研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shili Lin其他文献
COMPARISON OF RESPIRATORY SYMPTOMS AMONG HUMAN IMMUNODEFICIENCY VIRUS-SEROPOSITIVE INDIVIDUALS IN THE PRE- AND POST-HIGHLY ACTIVE ANTIRETROVIRAL THERAPY ERAS
- DOI:
10.1378/chest.132.4_meetingabstracts.502a - 发表时间:
2007-10-01 - 期刊:
- 影响因子:
- 作者:
Carmen M. Rosario;Shili Lin;Judy M. Opalek;Janice Drake;Philip T. Diaz - 通讯作者:
Philip T. Diaz
: Providing
: 提供
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Joseph S. Verducci;Vincent F. Melfi;Shili Lin;Zailong Wang;Sashwati Roy;Chandan K. Sen;Microarray - 通讯作者:
Microarray
Information Gain for Genetic Parameter Estimation with Incorporation of Marker Data
结合标记数据的遗传参数估计的信息增益
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:1.9
- 作者:
Yuqun Luo;Shili Lin - 通讯作者:
Shili Lin
Logistic Bayesian LASSO for Genetic Association Analysis of Data from Complex Sampling Designs
用于复杂抽样设计数据遗传关联分析的逻辑贝叶斯 LASSO
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.5
- 作者:
Yuan Zhang;J. Hofmann;M. Purdue;Shili Lin;S. Biswas - 通讯作者:
S. Biswas
A Novel Pigeon-Inspired Optimized RBF Model for Parallel Battery Branch Forecasting
一种新型的受鸽子启发的并行电池分支预测优化 RBF 模型
- DOI:
10.1155/2021/8895496 - 发表时间:
2021-02 - 期刊:
- 影响因子:2.3
- 作者:
Yanhui Zhang;Shili Lin;Haiping Ma;Yuanjun Guo;Wei Feng - 通讯作者:
Wei Feng
Shili Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shili Lin', 18)}}的其他基金
Modeling and Analysis of Genomic Imprinting and Maternal Effects
基因组印记和母体效应的建模和分析
- 批准号:
1208968 - 财政年份:2012
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
ATD: Statistical Methods and Software for Analyzing Massively Parallel Epigenomic Sequencing Data
ATD:用于分析大规模并行表观基因组测序数据的统计方法和软件
- 批准号:
1042946 - 财政年份:2010
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
Statistical Methods for Gene Mapping Based on a Confidence Set Approach
基于置信集方法的基因作图统计方法
- 批准号:
0306800 - 财政年份:2003
- 资助金额:
$ 26.61万 - 项目类别:
Continuing grant
Statistical and Computational Methods in Genetic Analysis
遗传分析中的统计和计算方法
- 批准号:
9971770 - 财政年份:1999
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
Mathematical Sciences: "Statistical Methods for Summarizing and Combining Gene Maps"
数学科学:《总结和组合基因图谱的统计方法》
- 批准号:
9632117 - 财政年份:1996
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319370 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319552 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219904 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319371 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
- 批准号:
2319372 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建模和风险缓解
- 批准号:
2319551 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220523 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
- 批准号:
2220529 - 财政年份:2023
- 资助金额:
$ 26.61万 - 项目类别:
Standard Grant














{{item.name}}会员




