EAGER: A Computational Framework Integrating Methods from Music Composition and Sketching for Large Scale Scientific Data Visualizations in the 3D Immersive Allosphere

EAGER:一种计算框架,集成了音乐作曲和素描方法,用于 3D 沉浸式 Allosphere 中的大规模科学数据可视化

基本信息

项目摘要

This project entails the design of a new computational framework based on music compositional process and sketching to map and identify patterns in large-scale complex scientific data sets. This research project will be undertaken at the California NanoSystems Institute AlloSphere, University of California, Santa Barbara. The Allosphere is one of the largest 3D immersive display devices in the world for scientific visualization and artistic instrumentation. Leveraging mathematical concepts and constructs for binding structure and information flow in scientific and artistic research, the computational framework will incorporate a three-dimensional hierarchical sketching system that will be the basis for structural representation. Sonic marking of patterns in large datasets and techniques in music composition will be explored as ideal methods to identify complex integrated layers of data as music carries meaning on several time-scales, from individual timbres and pitches to short melodies and rhythms all the way up to large-scale form and structure of a work, each engaging distinct perceptual and cognitive processes. Real-time, interactive representations of the data in the AlloSphere will allow researchers to rapidly prototype parametric systems for more time-consuming and resource-demanding simulations and experiments. Representing complex scientific data through large-scale immersive 3D audiovisual data representation will facilitate understanding to a wide audience, from advanced researchers who will be able to communicate across disciplines, to the general public. The AlloSphere will motivate dissemination of engineering and science research to wide audiences in education and society, through this new software platform that will allow a broader public to comprehend science that would be out of their reach of understanding. The AlloSphere Research Facility has its own formal outreach initiative that services the CNSI's Professional Outreach Program, that coordinates research interns, undergraduates and high school students through programs such as; (1) The after-school LEAPS (Let's Explore Physical Science) program works with eighth grade students and plans to start an independent research project option for high school seniors; (2) The INSET (NSF Internships in NanoSystems Science, Engineering and Technology) program recruits students from largely underrepresented groups from California community colleges for eight-week summer internships; (3) The Apprentice Researchers program engages high school juniors in individual laboratories at UCSB.
该项目需要设计一个新的计算框架,该框架基于音乐创作过程和草图,以映射和识别大规模复杂科学数据集中的模式。该研究项目将在位于圣巴巴拉的加州大学加州纳米系统研究所AlloSphere进行。Allosphere是世界上最大的3D沉浸式显示设备之一,用于科学可视化和艺术仪器。利用数学概念和构造来结合科学和艺术研究中的结构和信息流,计算框架将包含一个三维分层草图系统,该系统将成为结构表示的基础。大型数据集中模式的声波标记和音乐作曲技术将被探索为识别复杂集成数据层的理想方法,因为音乐在多个时间尺度上具有意义,从单个音色和音高到短旋律和节奏,一直到大规模的形式和作品结构,每个都涉及不同的感知和认知过程。 全息投影球中数据的实时交互式表示将使研究人员能够快速构建参数化系统的原型,以进行更耗时和资源要求更高的模拟和实验。通过大规模沉浸式3D视听数据表示来表示复杂的科学数据,将有助于广大受众的理解,从能够跨学科交流的高级研究人员到普通大众。全息投影球将推动工程和科学研究向教育和社会的广泛受众传播,通过这个新的软件平台,让更广泛的公众了解他们无法理解的科学。 全息投影球研究机构有自己的正式外展计划,为CNSI的专业外展计划提供服务,该计划通过以下计划协调研究实习生、本科生和高中生:(1)课后LEAPS(让我们探索物理科学)计划与八年级学生合作,并计划为高中毕业生启动一个独立的研究项目选项;(2)INSET(NSF纳米系统科学、工程和技术实习)计划从加州社区学院的代表性不足的群体中招募学生,进行为期八周的暑期实习;(3)学徒研究人员计划在UCSB的各个实验室中招募高中三年级学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JoAnn Kuchera-Morin其他文献

JoAnn Kuchera-Morin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JoAnn Kuchera-Morin', 18)}}的其他基金

Elements: Cyber-infrastructure for Interactive Computation and Display of Materials Datasets
要素:用于交互式计算和材料数据集显示的网络基础设施
  • 批准号:
    2004693
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Artistic Group Performance as a Model for Novel Collaborative Multimodal Human-Computer Interfaces
艺术团体表演作为新型协作多模式人机界面的模型
  • 批准号:
    0742968
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A Neural and Computational Framework of the Effort Paradox
努力悖论的神经和计算框架
  • 批准号:
    EP/Y014561/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
  • 批准号:
    2237663
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Developing an Experimental and Computational Framework for Studying Neural Representations of Tactile Motion on the Hand
开发用于研究手部触觉运动神经表征的实验和计算框架
  • 批准号:
    10732095
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2349122
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Alternative protein sources: growing the next generation computational modelling framework
替代蛋白质来源:发展下一代计算模型框架
  • 批准号:
    2886049
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
  • 批准号:
    2310910
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
  • 批准号:
    2309491
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: A multi-fidelity computational framework for vascular mechanobiology in SimVascular
合作研究:框架:SimVasulous 中血管力学生物学的多保真度计算框架
  • 批准号:
    2310909
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Probabilistic Framework for Self-Supervised, Data-Driven Computational Imaging
职业:自我监督、数据驱动的计算成像的概率框架
  • 批准号:
    2236796
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了