Collaborative Research: The Dynamics of Rhyolite Lava Eruption and Emplacement Inferred from Micro-Textures, Decompression Experiments, and Numerical Modeling

合作研究:从微观结构、减压实验和数值模拟推断流纹岩熔岩喷发和就位的动力学

基本信息

  • 批准号:
    1049662
  • 负责人:
  • 金额:
    $ 9.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-02-15 至 2015-01-31
  • 项目状态:
    已结题

项目摘要

Glassy obsidian (rhyolite) lava is one of the best known igneous rocks to the public, but because obsidian flows have not occurred historically, there are no clear answers to such basic questions as how fast do such lavas spread across the land or how long do such eruptions last. Answers to those questions may, however, be recorded in micro-textures in the obsidian, such as the sizes, shapes, and orientations of small crystals, known as microlites, which grew as the lava erupted and flowed away from the vent. Such crystals also commonly occur in discrete bands within obsidian, probably related to the way rhyolite magma flows. It is known that such crystals grow in response to cooling and gas loss from the erupting magma, and their textures can differ strongly in response to changing rates of cooling and gas exsolution. Those textures have not, however, been quantified for obsidian flows. Field studies of the distributions of microlite textures, in conjunction with experimental and analytical studies reproducing their growth in the laboratory will be used to relate microlite textures and eruption dynamics to determine how fast obsidian lava extrudes at the surface and flow outwards. Those answers will aid in understanding the hazards associated with obsidian lavas, which occur worldwide and in all tectonic environments, with especially large outpourings in Yellowstone National Park, Wyoming. In fact, much of the present-day landscape of Yellowstone National Park is shaped by obsidian lavas that cover 100s of square kilometers, some of which erupted in the past 100,000 years. Obsidian lava eruptions are one of the most likely types of magmatic eruption to occur in the future at Yellowstone National Park, and so understanding their eruptive behavior will aid scientists in responding to the next eruption.To establish how microlite textures record the eruption and flow of obsidian lava, an integrated database of micro-textural measurements from multiple lavas will be established, focused on 1) multiple lavas of similar volume, and 2) lavas that span a large range in volume. The first set will establish commonalities between flows, whereas the second will establish how conditions change to produce greatly different outpourings. Those rhyolite flows come from several distinct volcanic centers within the United States, located in California, Idaho, and Wyoming. Textural data of microlites (types, numbers, sizes, orientations) and flow banding (spatial distribution, widths) will be examined in all flows, and linked to magma ascent and degassing histories through decompression experiments. Those experiments will be designed to not only infer ascent rates and degassing histories of targeted lavas, but also to explore broader questions about the impacts of temperature, fluid composition, and crystal content on crystallization kinetics in rhyolite magma. It will be also critical to establish how long it takes for such lavas to cool at the surface. A novel approach that will be pursued will be to examine spherulites, radiating masses of microlites commonly found in obsidian lava. Spherulites are known to grow in response to cooling, and so their sizes, distributions, and compositional variations can establish how obsidian lava cools. Spherulite growth models will be developed by measuring size distributions of spherulites with high-resolution X-ray Computed Tomography and analyzing multi-element compositional profiles around spherulites with synchrotron-sourced infrared (water) and laser-ablation ICP-MS (cations), which will allow the cooling history of a sample to be extracted and placed into context of lava emplacement.
玻璃状黑曜石(流纹岩)熔岩是公众最熟悉的火成岩之一,但由于黑曜石流动在历史上没有发生过,因此对于这些熔岩在陆地上传播的速度有多快或这种喷发持续多久等基本问题没有明确的答案。 然而,这些问题的答案可能会记录在黑曜石的微观结构中,例如被称为微晶石的小晶体的大小,形状和方向,这些晶体随着熔岩喷发并从喷口流出而生长。 这种晶体也通常出现在黑曜石中的离散带中,可能与流纹岩岩浆流动的方式有关。 众所周知,这种晶体的生长是对冷却和喷发岩浆中气体损失的反应,它们的质地会随着冷却和气体出溶速率的变化而变化。 然而,黑曜石流的这些纹理还没有量化。 微晶纹理分布的实地研究,结合实验和分析研究,再现其在实验室中的增长将被用来关联微晶纹理和喷发动力学,以确定如何快速黑曜石熔岩挤出表面和向外流动。 这些答案将有助于理解与黑曜石熔岩相关的危害,黑曜石熔岩在世界各地和所有构造环境中都有发生,尤其是在怀俄明州的黄石国家公园。 事实上,黄石国家公园现今的大部分景观都是由黑曜石熔岩形成的,这些熔岩覆盖了100平方公里,其中一些是在过去的10万年里爆发的。 黑曜石熔岩喷发是黄石国家公园未来最有可能发生的岩浆喷发类型之一,因此了解其喷发行为将有助于科学家对下一次喷发做出反应。为了确定微晶结构如何记录黑曜石熔岩的喷发和流动,将建立多个熔岩显微结构测量的综合数据库,集中在1)相似体积的多个熔岩,和2)体积跨度大的熔岩。 第一组将建立流动之间的共性,而第二组将建立条件如何变化,以产生巨大的不同的流出。 这些流纹岩流来自美国境内的几个不同的火山中心,位于加州、爱达荷州和怀俄明州。 将在所有流动中检查微粒(类型,数量,大小,方向)和流动条带(空间分布,宽度)的纹理数据,并通过减压实验与岩浆上升和脱气历史联系起来。 这些实验的目的不仅是推断上升速率和脱气历史的目标熔岩,但也探索更广泛的问题,温度,流体成分和晶体含量的影响,在流纹岩岩浆结晶动力学。 确定这些熔岩在地表冷却需要多长时间也很关键。 一种新的方法,将追求将是检查球晶,辐射质量的微晶通常发现在黑曜石熔岩。 已知球粒会随着冷却而生长,因此它们的大小、分布和成分变化可以确定黑曜石熔岩如何冷却。 球晶生长模型将通过高分辨率X射线计算机断层扫描测量球晶的尺寸分布,并通过同步辐射源红外(水)和激光消融ICP-MS(阳离子)分析球晶周围的多元素成分分布来开发,这将允许提取样品的冷却历史并将其置于熔岩侵位的背景下。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Manga其他文献

Exposed columns in the Valles Caldera ignimbrites as records of hydrothermal cooling, Jemez Mountains, New Mexico, USA
  • DOI:
    10.1016/j.jvolgeores.2022.107536
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephen Self;Noah Randolph-Flagg;John E. Bailey;Michael Manga
  • 通讯作者:
    Michael Manga
A gas-tight shock tube apparatus for laboratory volcanic lightning under varying atmospheric conditions
用于不同大气条件下实验室火山闪电的气密激波管装置
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ∗. ChristinaSpringsklee;B. Scheu;Christoph Seifert;Michael Manga;C. Cimarelli;Damian Gaudin;Oliver Trapp;Donald Bruce Dingwell
  • 通讯作者:
    Donald Bruce Dingwell
Fracture penetration in planetary ice shells
  • DOI:
    10.1016/j.icarus.2008.10.010
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Maxwell L. Rudolph;Michael Manga
  • 通讯作者:
    Michael Manga
Strike-slip fault patterns on Europa: Obliquity or polar wander?
  • DOI:
    10.1016/j.icarus.2010.11.002
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alyssa Rose Rhoden;Terry A. Hurford;Michael Manga
  • 通讯作者:
    Michael Manga
The challenges of driving Charon's cryovolcanism from a freezing ocean
  • DOI:
    10.1016/j.icarus.2022.115391
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alyssa Rose Rhoden;Maxwell L. Rudolph;Michael Manga
  • 通讯作者:
    Michael Manga

Michael Manga的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Manga', 18)}}的其他基金

Particle clustering in dilute pyroclastic density currents and plumes
稀火山碎屑密度流和羽流中的颗粒聚集
  • 批准号:
    2042173
  • 财政年份:
    2021
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Subsurface plumbing, tremor migration, and eruption cycle of Yellowstone Geysers
合作研究:黄石间歇泉的地下管道、震颤迁移和喷发周期
  • 批准号:
    2116573
  • 财政年份:
    2021
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
EAGER Collaborative Research: Testing a new sensor for short term and long term measurement of heat flow in lakes
EAGER 协作研究:测试用于短期和长期测量湖泊热流的新传感器
  • 批准号:
    2041397
  • 财政年份:
    2020
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Magmatic, Crustal, and Conduit Conditions Required for Mafic, Plinian Volcanism
合作研究:探索镁铁质、普林尼式火山活动所需的岩浆、地壳和管道条件
  • 批准号:
    1831213
  • 财政年份:
    2018
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
ABR: Field, Laboratory, and Numerical Studies of Geyser Eruptions
ABR:间歇泉喷发的现场、实验室和数值研究
  • 批准号:
    1724986
  • 财政年份:
    2017
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Residual Stress Preserved in Crystals from Volcanic Eruptions
合作研究:火山喷发晶体中保存的残余应力
  • 批准号:
    1724469
  • 财政年份:
    2017
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Flood volcanism and environmental impacts -- A multidisciplinary investigation of the Deccan Traps and events at the Cretaceous-Paleogene boundary
合作研究:洪水火山活动和环境影响——对德干地盾和白垩纪-古近纪边界事件的多学科调查
  • 批准号:
    1615203
  • 财政年份:
    2016
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Continuing Grant
Collaborative Proposal: Experimental Studies of Dilute Pyroclastic Density Currents
合作提案:稀火山碎屑密度流的实验研究
  • 批准号:
    1447559
  • 财政年份:
    2015
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
RAPID: Hydrological responses to the August, 2014, Napa earthquake
RAPID:2014 年 8 月纳帕地震的水文响应
  • 批准号:
    1463997
  • 财政年份:
    2015
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative research: Origin of hydrologic responses to earthquakes: constraints from New Zealand, Taiwan, Chile, and USA
合作研究:地震水文响应的起源:新西兰、台湾、智利和美国的限制
  • 批准号:
    1344424
  • 财政年份:
    2014
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326020
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
  • 批准号:
    2326021
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348956
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
  • 批准号:
    2349872
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Continuing Grant
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
  • 批准号:
    2242365
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Snapping of Tethers
合作研究:系绳折断动力学
  • 批准号:
    2310665
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
  • 批准号:
    2348955
  • 财政年份:
    2024
  • 资助金额:
    $ 9.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了