CAREER: An Ultra-Low-Power MEMS-Based Implantable Biosystem for Restoring Vestibular Function-Platform for an Integrated Human-Centered Hybrid Biosystem

职业:基于超低功耗 MEMS 的可植入生物系统,用于恢复前庭功能平台,用于以人为中心的综合混合生物系统

基本信息

  • 批准号:
    1055801
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

ECCS-1055801Pamela Bhatti, Georgia Institute of TechnologyCAREER An Ultra-Low-Power MEMS-Based Implantable Biosystem for Restoring Vestibular Function-Platform for an Integrated Human-Centered Hybrid BiosystemABSTRACTThe objective of this research is to design, fabricate and validate an ultra-low-power implantable biomedical microsystem. The approach is to: (1) integrate an ultra-low-power biomimetic MEMS-based angular rotation sensor, (2) design and implement low power sensor interface and signal processing electronics, (3) fabricate highly flexible polymeric multichannel electrode arrays for electrical stimulation, and (4) integrate and validate the system in-vitro and eventually in-vivo. This will lead to an ultra-low-power fully implantable biosystem capable of activating vestibular nerve fibers in the inner ear serving to convey head rotation cues to the central nervous system serving to establish a sense of body position, maintain balance, and stabilize vision during movement. Intellectual Merit: Individuals suffering from bilateral vestibular dysfunction experience postural imbalance, dizziness and nausea and currently have no effective therapeutic options. Vestibular and associated balance dysfunction often leads to falls falls are linked to high rates of mortality and morbidity in the elderly, contributing significantly to today?s skyrocketing healthcare costs. By integrating an ultra-low-power passive MEMS-based angular rotation sensor, to aggressively reduce power consumption, and by integrating highly flexible polymeric multichannel electrode arrays, to enable focused current delivery to vestibular nerves, a viable low-power implantable vestibular biosystem may restore vestibular function and improve the quality of life for these individuals.Broader Impacts: The proposed sensing mechanism and low-power processing electronics may serve as a platform for an integrated human-centered hybrid biosystem such as a body worn device to measure angular head rotation, essential tremor or gait. To broaden participation of underrepresented groups, the PI integrates her research with outreach, mentoring, and teaching to engage students across the K-graduate continuum including Science Nights at an Atlanta science center, co-developing science modules with middle/high school teachers, developing a LabVIEW simulation of vestibular testing, and a graduate course addressing implantable biosystems.
摘要本研究的目的是设计、制造和验证一种超低功耗的可植入生物医学微系统。该方法是:(1)集成超低功耗仿生mems角旋转传感器,(2)设计并实现低功耗传感器接口和信号处理电子器件,(3)制造用于电刺激的高柔性聚合物多通道电极阵列,以及(4)在体外和最终在体内集成和验证系统。这将导致一种超低功率的全植入式生物系统,能够激活内耳的前庭神经纤维,将头部旋转的信号传递给中枢神经系统,从而在运动过程中建立身体位置感、保持平衡和稳定视力。智力优势:患有双侧前庭功能障碍的个体会经历姿势失衡、头晕和恶心,目前没有有效的治疗选择。前庭和相关的平衡功能障碍经常导致跌倒跌倒与老年人的高死亡率和发病率有关,对今天有重要影响?飙升的医疗费用。通过集成超低功耗无源mems角度旋转传感器,大幅降低功耗,通过集成高柔性聚合物多通道电极阵列,使聚焦电流传递到前庭神经,一个可行的低功耗植入式前庭生物系统可以恢复前庭功能,提高这些患者的生活质量。更广泛的影响:提出的传感机制和低功耗处理电子设备可以作为一个以人为中心的综合混合生物系统的平台,例如测量头部旋转角度、原发性震颤或步态的身体穿戴设备。为了扩大代表性不足的群体的参与,PI将她的研究与推广,指导和教学结合起来,以吸引k -研究生连续体的学生,包括亚特兰大科学中心的科学之夜,与初中/高中教师共同开发科学模块,开发前庭测试的LabVIEW模拟,以及解决植入式生物系统的研究生课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pamela Bhatti其他文献

Pamela Bhatti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pamela Bhatti', 18)}}的其他基金

PFI (MCA): A Cardiac Imaging System
PFI (MCA):心脏成像系统
  • 批准号:
    2122299
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PFI-TT: Translation of a Microcoil-Based Stimulating Array for Cochlear Implants
PFI-TT:基于微线圈的人工耳蜗刺激阵列的转化
  • 批准号:
    1827321
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Micro-magnetic Stimulation of Auditory Neurons: a New Paradigm in Overcoming Hearing Loss
听觉神经元的微磁刺激:克服听力损失的新范例
  • 批准号:
    1809334
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
I-Corps: Integrating Patient Facial Photographs with Medical Imaging Studies
I-Corps:将患者面部照片与医学成像研究相结合
  • 批准号:
    1462640
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Improving Sound Perception with an Advanced Intracochlear Electrode Array and Integrated Insertion Platform
利用先进的耳蜗内电极阵列和集成插入平台改善声音感知
  • 批准号:
    1133625
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BRIGE: Development of an Implantable Biomimetic Angular Rotation Sensor for Overcoming Vestibular Dysfunction
BRIGE:开发用于克服前庭功能的植入式仿生角旋转传感器
  • 批准号:
    0927103
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

磷脂酶Ultra特异性催化油脂体系中微量磷脂分子的调控机制研究
  • 批准号:
    31471690
  • 批准年份:
    2014
  • 资助金额:
    90.0 万元
  • 项目类别:
    面上项目
适应纳米尺度CMOS集成电路DFM的ULTRA模型完善和偏差模拟技术研究
  • 批准号:
    60976066
  • 批准年份:
    2009
  • 资助金额:
    41.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Electrochemical Dynamic Midinfrared Metasurface for Ultra-Low Power Wearable Thermoregulation
职业:用于超低功耗可穿戴温度调节的电化学动态中红外超表面
  • 批准号:
    2324286
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Achieving Ultra-Low Latency under Heterogeneity and Uncertainty in Edge Computing
职业:在边缘计算的异构性和不确定性下实现超低延迟
  • 批准号:
    2145713
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Electrochemical Dynamic Midinfrared Metasurface for Ultra-Low Power Wearable Thermoregulation
职业:用于超低功耗可穿戴温度调节的电化学动态中红外超表面
  • 批准号:
    2145933
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: An Ultra-low Power Analog Computing Hardware Design Framework for Machine Learning Inference in Edge Biomedical Devices
职业:用于边缘生物医学设备中机器学习推理的超低功耗模拟计算硬件设计框架
  • 批准号:
    2144703
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Robust and Ultra-low-power Spatial Intelligence
职业:稳健且超低功耗的空间智能
  • 批准号:
    2046435
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Antiferroelectric Negative Capacitance Transistors for Ultra-low Power Computing
职业:用于超低功耗计算的反铁电负电容晶体管
  • 批准号:
    2047880
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Pyramidal Intelligence for Ultra-low-power Wearable Massive-sensor Computers
职业:超低功耗可穿戴大规模传感器计算机的金字塔智能
  • 批准号:
    2047849
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Toward Embedding Perpetual Intelligence into Ultra-Low-Power Sensing and Inference Systems
职业:致力于将永久智能嵌入超低功耗传感和推理系统
  • 批准号:
    2047461
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: General-Purpose Stochastic Computing for Ultra-Low-Power Hardware Devices
职业:超低功耗硬件设备的通用随机计算
  • 批准号:
    2045985
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了