Micro-magnetic Stimulation of Auditory Neurons: a New Paradigm in Overcoming Hearing Loss
听觉神经元的微磁刺激:克服听力损失的新范例
基本信息
- 批准号:1809334
- 负责人:
- 金额:$ 32.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As estimated by the World Health Organization, over 5% of the world's population (360 million individuals: 32 million children) experience disabling hearing loss. Unattended hearing loss results in feelings of isolation, loneliness, and extreme frustration. This is especially prevalent in older individuals. Not only does hearing loss severely impair communication, it often leads to delays in spoken language abilities in children. A host of strategies, with varying degrees of success, can be used to reduce the detrimental effects of hearing disability: these range from screening, protection, captioning, sign language, to assistive devices such as hearing aids and cochlear implants (CI). CI devices function by coding sound waves as electrical pulses. In turn, these pulses determine the amount of electrical charge applied to neurons in the inner ear (cochlea) thereby conveying a lost or diminished sensation of sound. Approximately 324,000 CI have been implanted worldwide enabling some individuals to perceive speech very well. However, outcomes are highly variable and unpredictable. Everyday situations, such as understanding speech in noisy settings, and appreciating music, present users with significant challenges. A major contributor is the inability of CIs to precisely control the path of electrical charge in the highly conductive intracochlear fluid. This work pursues a promising and novel alternative to direct electrical stimulation - micro-magnetic stimulation via electrically pulsed coils housed on a flexible substrate and implanted in the cochlea. An intracochlear micro-coil array can activate auditory neurons with greater specificity while also enabling longer-term safety since the micro-coils are fully encapsulated. The applicability of micro-magnetic coils can naturally be extended to overcome loss in balance, sight, as well as to improve deep brain stimulation. To further enhance the societal impact of the research, partnerships with the Centers for Disease Control and Prevention, and Fernbank Science Center will enable and promote hearing health awareness and education in Atlanta, GA.The proposed work is a necessary first-step toward advancing an understanding of how locally induced fields may serve to excite neurons. In contrast with transcranial magnetic stimulation requiring a bulky coil and consuming considerable power, micro-coils implanted proximal to target neural tissue may engage the nervous system more effectively. To pursue this research, direct metal inkjet printing methods to build micro-coils on polymeric substrates will be developed. The devices will be fully encapsulated with a medical grade polymer and tested in solution to examine for impedance shifts and leakage current. Ex-vivo testing will also be accomplished with organotypic spiral ganglion neurons cultured on a 2D multichannel electrode array (MEA). The 2D-MEA and associated software system will enable the unprecedented possibility of non-invasive, closed-loop micro-magnetic stimulation and neural response recording. From this, neural threshold and specificity will be assessed and compared with conventional CI electrode-based stimulation. In a parallel and highly collaborative fashion, array insertion studies in human cadaver cochleae to assess insertion trauma, depth of insertion, and scalar wall distances will be pursued. More broadly, the application of novel printing and additive manufacturing, combined with flexible electronics, has the potential to transform fabrication of neural interface technologies to processes outside of the cleanroom, while enabling seamless integration with supporting drive electronics and packaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
据世界卫生组织估计,世界上超过5%的人口(3.6亿人:3200万儿童)患有致残性听力损失。无人照料的听力损失会导致孤立,孤独和极度沮丧的感觉。这在老年人中尤其普遍。听力损失不仅严重损害沟通,而且往往导致儿童口语能力的延迟。许多策略都取得了不同程度的成功,可用于减少听力残疾的不利影响:这些策略包括筛查、保护、字幕、手语,以及助听器和人工耳蜗等辅助设备。CI设备通过将声波编码为电脉冲来起作用。反过来,这些脉冲决定了施加到内耳(耳蜗)神经元的电荷量,从而传递声音的感觉丢失或减弱。全世界约有324,000个人工耳蜗植入,使一些人能够很好地感知语音。然而,结果是高度可变和不可预测的。日常情况,如在嘈杂环境中理解语音和欣赏音乐,给用户带来了巨大的挑战。一个主要原因是CI无法精确控制高导电性脑内液体中的电荷路径。这项工作追求一种有前途的和新颖的替代直接电刺激-微磁刺激通过电脉冲线圈容纳在一个灵活的基板和植入耳蜗。脑内微线圈阵列可以以更高的特异性激活听觉神经元,同时由于微线圈被完全封装,因此也能够实现更长期的安全性。微磁线圈的适用性自然可以扩展到克服平衡,视力的丧失,以及改善深部脑刺激。为了进一步增强研究的社会影响,与疾病控制和预防中心以及Fernbank科学中心的合作伙伴关系将促进佐治亚州亚特兰大的听力健康意识和教育。与需要庞大线圈并消耗相当大功率的经颅磁刺激相比,植入目标神经组织近端的微线圈可以更有效地接合神经系统。为了进行这项研究,将开发直接金属喷墨印刷方法,以在聚合物基底上构建微线圈。这些器械将用医用级聚合物完全封装,并在溶液中进行测试,以检查阻抗偏移和漏电流。离体测试也将用在2D多通道电极阵列(MEA)上培养的器官型螺旋神经节神经元来完成。2D-MEA和相关软件系统将使非侵入性、闭环微磁刺激和神经反应记录成为可能。由此,将评估神经阈值和特异性,并与传统的基于CI电极的刺激进行比较。将以平行和高度协作的方式,在人尸体耳蜗中进行阵列插入研究,以评估插入创伤、插入深度和标量壁距离。更广泛地说,新型印刷和增材制造的应用,结合柔性电子产品,有可能将神经接口技术的制造转变为洁净室之外的工艺,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic Stimulation of Dissociated Cortical Neurons on a Planar Mulitelectrode Array*
平面多电极阵列上分离的皮质神经元的磁刺激*
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:S. Mukesh;Riley Zeller;R. Butera;P. Bhatti
- 通讯作者:P. Bhatti
Development of Silver-Nanoparticle-Based Planar Coil Electrode for Electromagnetic Cochlear Stimulation
用于电磁耳蜗刺激的银纳米颗粒平面线圈电极的开发
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sarreal, R;Bhatti, P
- 通讯作者:Bhatti, P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pamela Bhatti其他文献
Pamela Bhatti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pamela Bhatti', 18)}}的其他基金
PFI (MCA): A Cardiac Imaging System
PFI (MCA):心脏成像系统
- 批准号:
2122299 - 财政年份:2022
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
PFI-TT: Translation of a Microcoil-Based Stimulating Array for Cochlear Implants
PFI-TT:基于微线圈的人工耳蜗刺激阵列的转化
- 批准号:
1827321 - 财政年份:2018
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
I-Corps: Integrating Patient Facial Photographs with Medical Imaging Studies
I-Corps:将患者面部照片与医学成像研究相结合
- 批准号:
1462640 - 财政年份:2014
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
Improving Sound Perception with an Advanced Intracochlear Electrode Array and Integrated Insertion Platform
利用先进的耳蜗内电极阵列和集成插入平台改善声音感知
- 批准号:
1133625 - 财政年份:2011
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
CAREER: An Ultra-Low-Power MEMS-Based Implantable Biosystem for Restoring Vestibular Function-Platform for an Integrated Human-Centered Hybrid Biosystem
职业:基于超低功耗 MEMS 的可植入生物系统,用于恢复前庭功能平台,用于以人为中心的综合混合生物系统
- 批准号:
1055801 - 财政年份:2011
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
BRIGE: Development of an Implantable Biomimetic Angular Rotation Sensor for Overcoming Vestibular Dysfunction
BRIGE:开发用于克服前庭功能的植入式仿生角旋转传感器
- 批准号:
0927103 - 财政年份:2009
- 资助金额:
$ 32.96万 - 项目类别:
Standard Grant
相似国自然基金
基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
- 批准号:12373051
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
磁性薄膜和磁性纳米结构中的自旋动力学研究
- 批准号:11174131
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
补偿性还是非补偿性规则:探析风险决策的行为与神经机制
- 批准号:31170976
- 批准年份:2011
- 资助金额:64.0 万元
- 项目类别:面上项目
精神分裂症进程中非对称性活跃脑结构改变的磁共振研究
- 批准号:81171275
- 批准年份:2011
- 资助金额:14.0 万元
- 项目类别:面上项目
基于多模态磁共振探索迟发性运动障碍神经环路结构和功能异常
- 批准号:81100999
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
精神分裂症记忆障碍的脑网络组学研究
- 批准号:91132301
- 批准年份:2011
- 资助金额:350.0 万元
- 项目类别:重大研究计划
基于非血流信号的脑功能成像技术与探测研究
- 批准号:81071149
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
一种新的给药方式--耳后给药治疗内耳疾病的作用途径及机制研究
- 批准号:81070780
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
超顺磁性氧化铁-量子点双显像荷电量可控性正电荷纳米囊泡用于干细胞移植的MRI活体示踪
- 批准号:81071208
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
磁力显微镜对纳米尺度磁畴结构的定量研究
- 批准号:51071088
- 批准年份:2010
- 资助金额:38.0 万元
- 项目类别:面上项目
相似海外基金
Sex, age, and gender-based analysis of the efficacy of repetitive transcranial magnetic stimulation (rTMS) for functional recovery after stroke
基于性别、年龄和性别的重复经颅磁刺激 (rTMS) 对中风后功能恢复的功效分析
- 批准号:
497964 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
CAREER: Magnetic Stimulation and Myelination
职业:磁刺激和髓鞘形成
- 批准号:
2238723 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Continuing Grant
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
EFFECTS OF DISEASE AND PALLIDAL DEEP BRAIN STIMULATION ON ANKLE MUSCLE CONTROL IN PARKINSON'S DISEASE
疾病和苍白球深部脑刺激对帕金森病患者踝关节肌肉控制的影响
- 批准号:
10749673 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Establishing the anatomical and functional mechanisms of white matter deep brain stimulation
建立白质深部脑刺激的解剖和功能机制
- 批准号:
10803745 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Functional Magnetic Resonance Imaging and Deep Learning to Improve Deep Brain Stimulation Therapy
功能磁共振成像和深度学习改善脑深部刺激疗法
- 批准号:
10717563 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Modeling, measurement and prediction of cardiac magneto-stimulation thresholds
心脏磁刺激阈值的建模、测量和预测
- 批准号:
10734438 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
The Effect of repetitive transcranial Magnetic stimulation on patients with Autism spectrum disorder and Traumatic symptoms
重复经颅磁刺激对自闭症谱系障碍患者及创伤症状的影响
- 批准号:
23K06991 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrating Transcranial Magnetic Stimulation as a Treatment for Nicotine Dependence in the Clinic: A Pragmatic, Hybrid Effectiveness-Implementation Trial.
在临床中整合经颅磁刺激作为尼古丁依赖的治疗方法:一项务实的混合有效性实施试验。
- 批准号:
487645 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Operating Grants
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别: