CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
基本信息
- 批准号:1845009
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Description: Information processing and communication are at the heart of many technologies that enable modern life. These technologies have experienced exponential growth over the past several decades, thanks to the aggressive scaling of electronic devices. Next-generation information technologies, however, cannot be supported by only scaling transistors, and will rely heavily on data centers and cloud computing to drive performance improvements. We are already experiencing this trend with the increased investment from large technology companies in these sectors. To support this architecture, we need to bring optical interconnect technology (i.e., fiber optics), which is the backbone of the modern internet, to shorter length scales. Going beyond classical computing and communication technologies, quantum mechanics presents an opportunity to realize a paradigm shift in information technology. All these technologies, however, require ultra-low power optoelectronic devices; the power requirement is almost four orders of magnitude lower than that of existing devices. In my research, I aim to create these devices using atomically thin materials integrated with silicon nitride photonic circuits. Specifically, we aim to develop an optical modulator and optical switch, that can change light transmission using minimal power. These devices will be fabricated using well-developed semiconductor manufacturing technology. Along with developing new technology, the proposal aims to incorporate a design-build-test module in existing lecture-based nanophotonics courses to provide hands-on experience to the next-generation knowledge workers in the field of integrated photonics.Technical Description: Ultra-low-power tunable and nonlinear optical devices hold the key for numerous optical technologies including optoelectronic information processing, communication, and photonic quantum simulations of strongly correlated materials. Currently, the power required to modulate the light transmission through photonic devices or to observe a nonlinear input-output response is too high. This power can be reduced by spatially confining the electronic and photonic wave functions to a nanometer-length scale for an extended period of time. Nanophotonic resonators integrated with emerging low-dimensional materials present an attractive platform to create ultra-low-power optoelectronic devices. To that end, this proposal aims to integrate van der Waals (vdW) materials (e.g., graphene or transition metal dichalcogenides) and their heterostructures with silicon nitride nano-resonators. The choice of silicon nitride is motivated by its large bandgap and compatibility with large-scale semiconductor manufacturing. The vdW materials are chosen for their unique quantum properties, large exciton binding energies, and atomic thinness that enable extremely small active volumes and unprecedented material compatibility; they can be transferred onto any substrate without requiring explicit lattice matching. Combining numerical simulation, device fabrication, and optical characterization, three research aims will be pursued: (i) develop an experiment-driven model for vdW material?cavity coupling; (ii) demonstrate optical nonlinearity at the few photon level in a coupled cavity array, and (iii) create an electro-optic modulator with attojoule electrical energy per switching. While the initial applications of these devices will be in ultra-low-power classical optical information science, the same platform can be used for developing quantum technologies, including quantum many-body simulations and quantum signal transduction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信息处理和通信是现代生活中许多技术的核心。这些技术在过去几十年中经历了指数级增长,这要归功于电子设备的积极扩展。然而,下一代信息技术不能仅仅依靠缩放晶体管来支持,而是将严重依赖数据中心和云计算来推动性能的提高。随着大型科技公司在这些领域的投资增加,我们已经经历了这一趋势。为了支持这种架构,我们需要引入光互连技术(即,光纤),这是现代互联网的骨干,以较短的长度尺度。量子力学超越了经典的计算和通信技术,为实现信息技术的范式转变提供了机会。然而,所有这些技术都需要超低功率的光电器件;功率要求比现有器件低近四个数量级。在我的研究中,我的目标是使用原子级薄材料与氮化硅光子电路集成来创建这些设备。具体来说,我们的目标是开发一种光调制器和光开关,可以用最小的功率改变光的传输。这些设备将使用成熟的半导体制造技术制造。沿着新技术的开发,该提案旨在将设计-构建-测试模块纳入现有的基于讲座的纳米光子学课程,为集成光子学领域的下一代知识工作者提供实践经验。技术描述:超低功率可调谐非线性光学器件是光电信息处理、通信、和强关联材料的光子量子模拟。目前,调制通过光子器件的光传输或观察非线性输入-输出响应所需的功率太高。这种功率可以通过将电子和光子波函数在空间上限制在纳米长度尺度上延长一段时间来降低。与新兴的低维材料集成的纳米光子谐振器提供了一个有吸引力的平台,以创建超低功耗光电器件。为此,该提议旨在整合货车德瓦尔斯(vdW)材料(例如,石墨烯或过渡金属二硫属化物)及其与氮化硅纳米谐振器的异质结构。选择氮化硅的动机是其大的带隙和与大规模半导体制造的兼容性。选择vdW材料是因为它们独特的量子特性、大的激子结合能和原子薄度,从而实现极小的活性体积和前所未有的材料兼容性;它们可以转移到任何衬底上,而不需要明确的晶格匹配。结合数值模拟,器件制造和光学特性,三个研究目标将追求:(i)开发一个实验驱动的模型vdW材料?空腔耦合;(ii)证明在耦合腔阵列中在少数光子水平下的光学非线性,以及(iii)产生每次切换具有阿焦耳电能的电光调制器。虽然这些设备的最初应用将在超低功耗经典光学信息科学中,但相同的平台可用于开发量子技术,包括量子多体模拟和量子信号转导。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-precision local transfer of van der Waals materials on nanophotonic structures
- DOI:10.1364/ome.383255
- 发表时间:2019-07
- 期刊:
- 影响因子:2.8
- 作者:D. Rosser;Taylor Fryett;Abhi Saxena;A. Ryou;A. Majumdar
- 通讯作者:D. Rosser;Taylor Fryett;Abhi Saxena;A. Ryou;A. Majumdar
Visible Wavelength Flatband in a Gallium Phosphide Metasurface
- DOI:10.1021/acsphotonics.3c00175
- 发表时间:2023-02
- 期刊:
- 影响因子:7
- 作者:Christopher Munley;Arnab Manna;David Sharp;Minho Choi;Hao A. Nguyen;B. Cossairt;Mo Li;A. Barnard;A. Majumdar
- 通讯作者:Christopher Munley;Arnab Manna;David Sharp;Minho Choi;Hao A. Nguyen;B. Cossairt;Mo Li;A. Barnard;A. Majumdar
Dispersive coupling between MoSe 2 and an integrated zero-dimensional nanocavity
MoSe 2 与集成零维纳米腔之间的色散耦合
- DOI:10.1364/ome.443536
- 发表时间:2021
- 期刊:
- 影响因子:2.8
- 作者:Rosser, David;Gerace, Dario;Chen, Yueyang;Liu, Yifan;Whitehead, James;Ryou, Albert;Andreani, Lucio C.;Majumdar, Arka
- 通讯作者:Majumdar, Arka
Optimal condition to probe strong coupling of two-dimensional excitons and zero-dimensional cavity modes
探测二维激子与零维腔模强耦合的最佳条件
- DOI:10.1103/physrevb.104.235436
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Rosser, David;Gerace, Dario;Andreani, Lucio C.;Majumdar, Arka
- 通讯作者:Majumdar, Arka
Coupling of photonic crystal cavity and interlayer exciton in heterobilayer of transition metal dichalcogenides
过渡金属二硫化物异质双层中光子晶体腔与层间激子的耦合
- DOI:10.1088/2053-1583/ab597d
- 发表时间:2020
- 期刊:
- 影响因子:5.5
- 作者:Rivera, Pasqual;Fryett, Taylor K;Chen, Yueyang;Liu, Chang-Hua;Ray, Essance;Hatami, Fariba;Yan, Jiaqiang;Mandrus, David;Yao, Wang;Majumdar, Arka
- 通讯作者:Majumdar, Arka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arka Majumdar其他文献
Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Arka Majumdar - 通讯作者:
Arka Majumdar
Full color visible imaging with crystalline silicon meta-optics
基于晶体硅超构表面的全彩可见光成像
- DOI:
10.1038/s41377-025-01888-w - 发表时间:
2025-06-18 - 期刊:
- 影响因子:23.400
- 作者:
Johannes E. Fröch;Luocheng Huang;Zhihao Zhou;Virat Tara;Zhuoran Fang;Shane Colburn;Alan Zhan;Minho Choi;Arnab Manna;Andrew Tang;Zheyi Han;Karl F. Böhringer;Arka Majumdar - 通讯作者:
Arka Majumdar
Strain-tunable emission from single photon emitters in a Hexagonal Boron Nitride Metasurface
六方氮化硼超表面中单光子发射器的应变可调发射
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Arnab Manna;Johannes E. Fröch;Arka Majumdar - 通讯作者:
Arka Majumdar
Low-loss multilevel operation using lossy phase-change material-integrated silicon photonics
使用有损相变材料集成硅光子学进行低损耗多级操作
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:1.6
- 作者:
Rui Chen;Virat Tara;Jayita Dutta;Zhuoran Fang;Jiajiu Zheng;Arka Majumdar - 通讯作者:
Arka Majumdar
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
- DOI:
10.1364/oe.19.007530 - 发表时间:
2011 - 期刊:
- 影响因子:3.8
- 作者:
G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković - 通讯作者:
J. Vučković
Arka Majumdar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arka Majumdar', 18)}}的其他基金
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
- 批准号:
2344659 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329089 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
- 批准号:
2223495 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
- 批准号:
2103673 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
- 批准号:
2120774 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
- 批准号:
2003509 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
- 批准号:
1936100 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities
QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟
- 批准号:
1836500 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OP: Electrically Controlled Solid-State Cavity QED with Single Emitters in Monolayer Material
OP:单层材料中具有单发射极的电控固态腔 QED
- 批准号:
1708579 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于Van Allen Probes观测的地球辐射带电子反转能谱演化过程和物理机制研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
单原子金属-二维CeO2杂化材料的液相等离子体制备及光增强Mars-Van Krevelen催化氧化研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
钛基即用式通用化Van-HA-CS/β-GP智能抗菌保形涂层预防脊柱植入物相关感染作用研究
- 批准号:52271253
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
Van der Waals 异质结中层间耦合作用的同步辐射研究
- 批准号:U2032150
- 批准年份:2020
- 资助金额:60.0 万元
- 项目类别:联合基金项目
二维van der Waals铁磁性绝缘材料的高压研究
- 批准号:11904416
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于黑磷烯van der Waals异质结的GHz带宽光通讯波段探测器研究
- 批准号:61704082
- 批准年份:2017
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于石墨烯衬底van der Waals薄膜气-液-固外延生长的高质量氧化锌制备
- 批准号:61604062
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
具脉冲影响的Van der Pol方程的复杂动力学行为研究
- 批准号:11626145
- 批准年份:2016
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
Van der Waals作用力对水在石墨烯表面吸附的影响
- 批准号:10974238
- 批准年份:2009
- 资助金额:40.0 万元
- 项目类别:面上项目
不同MLST型VRE菌株van基因传播机制研究
- 批准号:30800035
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Multiferroicity in van der Waals Heterostructures
职业:范德华异质结构的多铁性
- 批准号:
2340773 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Anisotropy-Directed Synthesis of Optically Active 1D van der Waals Nanocrystals and Development of Multiscale Solid State Chemistry Educational Activities
职业:光学活性一维范德华纳米晶体的各向异性定向合成和多尺度固态化学教育活动的发展
- 批准号:
2340918 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Design and synthesis of functional van der Waals magnets
职业:功能性范德华磁体的设计与合成
- 批准号:
2338229 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Designing topological superconductivity and correlated phases in Van der Waals materials
职业:设计范德华材料中的拓扑超导性和相关相
- 批准号:
2238748 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: van der Waals Semiconductor Integration via Surface and Interface Tailoring
职业:通过表面和界面定制进行范德华半导体集成
- 批准号:
2238564 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Van der Waals heterostructures of magnetic oxide membranes
职业:磁性氧化物膜的范德华异质结构
- 批准号:
2145880 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: EMERGENT BEHAVIOR OF VAN DER WAALS MAGNETIC MATERIALS: THE GENESIS OF MATERIALS INTELLIGENCE
职业生涯:范德瓦尔斯磁性材料的涌现行为:材料智能的起源
- 批准号:
2044842 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Tunable topological states in twisted van der Waals heterostructures
职业:扭曲范德华异质结构中的可调谐拓扑态
- 批准号:
2041972 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Strain-driven phase transitions in 2D van der Waals based devices
职业:二维范德华器件中的应变驱动相变
- 批准号:
1942815 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant