CAREER: High Dimensional Statistics -- Adaptive Networks, Structure and Robustness

职业:高维统计——自适应网络、结构和鲁棒性

基本信息

  • 批准号:
    1056028
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Data-driven adaptation has emerged as a powerful paradigm for algorithm design in engineered, social, and biological large-scale complex systems. Many phenomena in complex dynamical networks are naturally high dimensional: a model?s dimensionality may equal or exceed the number of data points one can collect or experiments one can perform. This novel regime poses severe algorithmic, computational and analytical challenges.Intellectual Merit: Low-dimensional structure ? often hidden but prevalent in many complex systems ? offers a way forward. We propose an essentially complete rethinking of Robust Optimization: imagining fictitious parameter uncertainty we design a new algorithmic framework for finding and exploiting structure. This greatly broadens the scope of problems where structure can be exploited, unifying results that previously seemed disconnected, and opening the door for the design of new efficient and provably effectivealgorithms. Then, marrying essential ideas of robust optimization with tools from high-dimensional statistics, we explore robustness to potentially severe data corruption in high-dimensions ? a problem that classical robust statistics has largely been unable to address.Broader Impacts: Curriculum initiatives include a vertical and horizontal integration of data-driven techniques in new curriculum. The work will influence and be motivated by strong connections to industry partners. High-dimensional data will become increasingly pervasive (the length of genomes sequenced increases; the number of patients carrying a genetic disease does not). Many questions critical to society, science and our future depend fundamentally on successful analysis and efficient, robust algorithms for the high dimensional regime; the impact to real applications promises to be immense.
数据驱动的适应已经成为工程,社会和生物大规模复杂系统中算法设计的一个强大范例。复杂动态网络中的许多现象都是高维的:模型?的维数可以等于或超过可以收集的数据点或可以执行的实验的数量。这种新的制度提出了严峻的算法,计算和分析的挑战。智力优点:低维结构?在许多复杂的系统中经常隐藏但普遍存在?提供了前进的方向。我们提出了一个基本上完整的重新思考鲁棒优化:想象虚构的参数不确定性,我们设计了一个新的算法框架,发现和利用结构。这极大地拓宽了问题的范围,其中结构可以利用,统一的结果,以前似乎脱节,并打开大门,设计新的高效和可证明有效的算法。然后,从高维统计的工具,强大的优化与结婚的基本思想,我们探讨潜在的严重数据损坏的高维鲁棒性?更广泛的影响:课程倡议包括在新课程中纵向和横向整合数据驱动技术。这项工作将影响并受到与行业合作伙伴的强大联系的激励。高维数据将变得越来越普遍(测序的基因组长度增加;携带遗传疾病的患者数量不会增加)。许多对社会、科学和我们的未来至关重要的问题从根本上依赖于对高维区域的成功分析和高效、鲁棒的算法;对真实的应用的影响将是巨大的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Constantine Caramanis其他文献

Constantine Caramanis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Constantine Caramanis', 18)}}的其他基金

EPCN: Strong Diagnoses from Weak Signals: Leveraging Network Effects for Epidemic Detection
EPCN:弱信号强诊断:利用网络效应进行流行病检测
  • 批准号:
    1609279
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: NEDG: Network Scheduling and Routing under Partial Information Structure
合作研究:NEDG:部分信息结构下的网络调度与路由
  • 批准号:
    0831580
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Randomness in High-Dimensional Combinatorics: Colorings, Robustness, and Statistics
高维组合中的随机性:着色、鲁棒性和统计
  • 批准号:
    2247078
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    2218713
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2122628
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AF: Small: Faster Algorithms for High-Dimensional Robust Statistics
AF:小:用于高维稳健统计的更快算法
  • 批准号:
    2307106
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Inference for High-Dimensional Structures via Subspace Learning: Statistics, Computation, and Beyond
职业:通过子空间学习推理高维结构:统计、计算及其他
  • 批准号:
    2203741
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: New Challenges in High-Dimensional and Nonparametric Statistics
职业:高维和非参数统计的新挑战
  • 批准号:
    2048028
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics
合作研究:AF:中:算法高维稳健统计
  • 批准号:
    2107547
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Model Selection for High-Dimensional Temporal Disaggregation in Official Statistics
官方统计中高维时间分解的模型选择
  • 批准号:
    ES/V006339/1
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
Collaborative Research: AF: Medium: Algorithmic High-Dimensional Robust Statistics
合作研究:AF:中:算法高维稳健统计
  • 批准号:
    2107079
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER:Reducibility among high-dimensional statistics problems: information preserving mappings, algorithms, and complexity.
职业:高维统计问题的可归约性:信息保存映射、算法和复杂性。
  • 批准号:
    1940205
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了