Travel Support: Infinite Dimensional Lie Algebras, Quantum Groups and their Applications

旅行支持:无限维李代数、量子群及其应用

基本信息

  • 批准号:
    1059160
  • 负责人:
  • 金额:
    $ 3.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-10-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

The proposed project is to support eight graduate students in Berkeley to travel to the Center for Quantum Geometry of Moduli Spaces in Aarhus, Denmark. Graduate students will participate in research workshops, attend master-classes and other research activities as well as to work together with their peers in Europe.The research topics lie at the interface of representation theory and mathematical physics. More specifically, it aims at problems in the representation theory of quantum groups at roots of 1, on invariants of 3-manifolds, certain problems in local quantum field theory (such as the construction of perturbative Chern-Simons theory), and on problemsin integrable systems and solvable models of statistical mechanics. One of the central questions in modern theoretical physics is the construction of the model of fundamental interaction which is consistent with experiment and mathematically adequate. The framework of local quantum field theory is the main concept behind the standard model. However the framework of quantum field theory still largely remains a mathematical puzzle. Part of the research will focus on understanding this puzzle in the context of semi-classical quantization. The goal of other parts of the proposal is the construction of topological and integrable quantum field theories combinatorially and the study of emerging algebraic and analytical problems.
拟议的项目是支持伯克利的八名研究生前往丹麦奥胡斯的模空间量子几何中心。研究生将参加研究研讨会,参加大师班和其他研究活动,并与欧洲的同龄人一起工作。研究课题是表征理论与数学物理的交叉。更具体地说,它旨在解决量子群在1根的表示理论中的问题,3流形的不变量,局部量子场论中的某些问题(如摄动chen - simons理论的构造),以及统计力学中可积系统和可解模型的问题。现代理论物理学的中心问题之一是建立与实验相一致且数学上充分的基本相互作用模型。局域量子场论的框架是标准模型背后的主要概念。然而,量子场论的框架在很大程度上仍然是一个数学难题。部分研究将集中在半经典量化背景下理解这个难题。提案的其他部分的目标是结合拓扑和可积量子场论的构建以及新出现的代数和分析问题的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicolai Reshetikhin其他文献

On Invariants of Graphs Related to Quantum $${\mathfrak {sl}(2)}$$ at Roots of Unity
论统一根处与量子 $${mathfrak {sl}(2)}$$ 相关的图的不变量
  • DOI:
    10.1007/s11005-009-0320-9
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Nathan Geer;Nicolai Reshetikhin
  • 通讯作者:
    Nicolai Reshetikhin
ON 2 d YANG-MILLS THEORY AND INVARIANTS OF LINKSMICHAEL POLYAK AND
二维Yang-Mills理论和LINKSMICHAEL POLYAK和的不变量
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Polyak;Nicolai Reshetikhin
  • 通讯作者:
    Nicolai Reshetikhin
Graphical Calculus for Quantum Vertex Operators, I: The Dynamical Fusion Operator
量子顶点算子的图解演算,I:动态融合算子
  • DOI:
    10.1007/s00220-024-04984-x
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hadewijch De Clercq;Nicolai Reshetikhin;Jasper Stokman
  • 通讯作者:
    Jasper Stokman
Flat Connections from Irregular Conformal Blocks
不规则保形块的扁平连接
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Babak Haghighat;Yihua Liu;Nicolai Reshetikhin
  • 通讯作者:
    Nicolai Reshetikhin
Random Skew Plane Partitions with a Piecewise Periodic Back Wall
  • DOI:
    10.1007/s00023-011-0120-5
  • 发表时间:
    2011-06-28
  • 期刊:
  • 影响因子:
    1.300
  • 作者:
    Cedric Boutillier;Sevak Mkrtchyan;Nicolai Reshetikhin;Peter Tingley
  • 通讯作者:
    Peter Tingley

Nicolai Reshetikhin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicolai Reshetikhin', 18)}}的其他基金

Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    1902226
  • 财政年份:
    2019
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Homotopy Renormalization of Topological Field Theories
FRG:协作研究:拓扑场论的同伦重正化
  • 批准号:
    1664521
  • 财政年份:
    2017
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    1601947
  • 财政年份:
    2016
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    1201391
  • 财政年份:
    2012
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    0901431
  • 财政年份:
    2009
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    0601912
  • 财政年份:
    2006
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    0307599
  • 财政年份:
    2003
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    0070931
  • 财政年份:
    2000
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Continuing Grant
U.S.-German Cooperative Research on Discrete Integrable Systems
美德离散可积系统合作研究
  • 批准号:
    9603239
  • 财政年份:
    1997
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    9700921
  • 财政年份:
    1997
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
  • 批准号:
    21002080
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
  • 批准号:
    70501008
  • 批准年份:
    2005
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Partial Support of the Condensed Matter and Materials Research Committee
凝聚态与材料研究委员会的部分支持
  • 批准号:
    2337353
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
  • 批准号:
    2418579
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
  • 批准号:
    2343087
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Support of Student Travel to Attend the Joint Meetings of The Clay Minerals Society and the Asian Clay Conference
支持学生参加粘土矿物学会和亚洲粘土会议联席会议
  • 批准号:
    2421961
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Standard Grant
Providing Aid to Support STEM Success for Talented, Low-Income Students
为有才华的低收入学生提供 STEM 成功支持
  • 批准号:
    2321667
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
  • 批准号:
    2341110
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Cooperative Agreement
The development and evaluation of a digital role playing game (RPG) as a tool to support foreign language learning
作为支持外语学习工具的数字角色扮演游戏(RPG)的开发和评估
  • 批准号:
    24K04095
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
  • 批准号:
    EP/Y032640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Research Grant
An innovative international payment collection platform using fintech and FPS technology to support SMBs with international transactions that could cut fees by 83%
An%20innovative%20international%20 payment%20collection%20platform%20using%20fintech%20and%20FPS%20technology%20to%20support%20SMBs%20with%20international%20transactions%20that%20could%20cut%20fees%20by%2083%
  • 批准号:
    10098770
  • 财政年份:
    2024
  • 资助金额:
    $ 3.2万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了