Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
基本信息
- 批准号:0901431
- 负责人:
- 金额:$ 32.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The proposal is focused on problems which lie at the interface of representation theory and mathematical physics. More specially, it aims at problems in the representation theory of quantum groups at roots of 1, on invariants of 3-manifolds, certain problems in local quantum field theory (such as the construction of perturbative Chern-Simons theory), and on problems in integrable systems and solvable models of statistical mechanics.One of the central questions in modern theoretical physics is the construction of the model of fundamental interaction which is consistent with the experiment and mathematically adequate. The framework of local quantum field theory is main concept behind the standard model. However the framework of quantum field theory still largely remain a mathematical puzzle. Part of my research will focus on understanding this puzzle in the context of semi-classical quantization. The goal of other parts of the proposal is the construction of topological and integrable quantum field theories combinatorically and the study of emerging algebraic and analytical problems.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该提案的重点是位于表征理论和数学物理界面的问题。更具体地说,它针对的问题,在表示理论的量子群在根1,不变量的3流形,某些问题,在当地的量子场论(如微扰陈-西蒙斯理论的构建),现代理论物理学的中心问题之一是基本相互作用模型的构造,与实验结果一致,数学上也是足够的。局域量子场论的框架是标准模型背后的主要概念。然而,量子场论的框架在很大程度上仍然是一个数学难题。我的部分研究将集中在半经典量子化的背景下理解这个难题。该提案的其他部分的目标是拓扑和可积量子场论组合的建设和新兴的代数和分析问题的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolai Reshetikhin其他文献
On Invariants of Graphs Related to Quantum $${\mathfrak {sl}(2)}$$ at Roots of Unity
论统一根处与量子 $${mathfrak {sl}(2)}$$ 相关的图的不变量
- DOI:
10.1007/s11005-009-0320-9 - 发表时间:
2009 - 期刊:
- 影响因子:1.2
- 作者:
Nathan Geer;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
ON 2 d YANG-MILLS THEORY AND INVARIANTS OF LINKSMICHAEL POLYAK AND
二维Yang-Mills理论和LINKSMICHAEL POLYAK和的不变量
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Michael Polyak;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
Graphical Calculus for Quantum Vertex Operators, I: The Dynamical Fusion Operator
量子顶点算子的图解演算,I:动态融合算子
- DOI:
10.1007/s00220-024-04984-x - 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Hadewijch De Clercq;Nicolai Reshetikhin;Jasper Stokman - 通讯作者:
Jasper Stokman
Flat Connections from Irregular Conformal Blocks
不规则保形块的扁平连接
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Babak Haghighat;Yihua Liu;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
Random Skew Plane Partitions with a Piecewise Periodic Back Wall
- DOI:
10.1007/s00023-011-0120-5 - 发表时间:
2011-06-28 - 期刊:
- 影响因子:1.300
- 作者:
Cedric Boutillier;Sevak Mkrtchyan;Nicolai Reshetikhin;Peter Tingley - 通讯作者:
Peter Tingley
Nicolai Reshetikhin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolai Reshetikhin', 18)}}的其他基金
Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1902226 - 财政年份:2019
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Homotopy Renormalization of Topological Field Theories
FRG:协作研究:拓扑场论的同伦重正化
- 批准号:
1664521 - 财政年份:2017
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1601947 - 财政年份:2016
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1201391 - 财政年份:2012
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
Travel Support: Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
旅行支持:无限维李代数、量子群及其应用
- 批准号:
1059160 - 财政年份:2010
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
0601912 - 财政年份:2006
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
0307599 - 财政年份:2003
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
0070931 - 财政年份:2000
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
U.S.-German Cooperative Research on Discrete Integrable Systems
美德离散可积系统合作研究
- 批准号:
9603239 - 财政年份:1997
- 资助金额:
$ 32.69万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
9700921 - 财政年份:1997
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2022
- 资助金额:
$ 32.69万 - 项目类别:
Discovery Grants Program - Individual
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
- 批准号:
RGPIN-2016-04651 - 财政年份:2021
- 资助金额:
$ 32.69万 - 项目类别:
Discovery Grants Program - Individual
Representations in Infinite-Dimensional Lie Theory
无限维李理论中的表示
- 批准号:
RGPIN-2017-04280 - 财政年份:2021
- 资助金额:
$ 32.69万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2021
- 资助金额:
$ 32.69万 - 项目类别:
Discovery Grants Program - Individual
Lie Groupoids and Infinite-Dimensional Dynamical Systems
李群群和无限维动力系统
- 批准号:
2008021 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Continuing Grant
Representations in Infinite-Dimensional Lie Theory
无限维李理论中的表示
- 批准号:
RGPIN-2017-04280 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
- 批准号:
2444690 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Studentship
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Discovery Grants Program - Individual
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
- 批准号:
RGPIN-2016-04651 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
- 批准号:
EP/T018844/1 - 财政年份:2020
- 资助金额:
$ 32.69万 - 项目类别:
Research Grant