FRG: Collaborative Research: Homotopy Renormalization of Topological Field Theories
FRG:协作研究:拓扑场论的同伦重正化
基本信息
- 批准号:1664521
- 负责人:
- 金额:$ 18.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematics inspired by physics has successfully provided the background and the language for most sophisticated areas of modern physics. In this project the principal investigators aim to create new algebraic and geometric tools helping to formulate ideas and methods of quantum physics in a precise mathematical way. Specifically, the team will combine its members' past experience and achievements to construct new Topological Quantum Field Theories for manifolds with additional structures. Inspired by Witten's Chern-Simons theory and invariants of 3-manifolds that are known now as Witten-Reshetikhin-Turaev invariants, the principal investigators will explore their new Field Theories with the objective to find physical definitions for the resulting topological invariants of manifolds. This work is stimulated by several fundamental examples and will open the door to new research avenues in algebra, topology, geometry, mathematical physics, and related areas of mathematics. The broader impacts of the project belong to two main categories: mentoring and outreach. The members of the research team are currently mentoring a total of twelve PhD students. They will advise graduate students on projects related to the main objectives of the grant. The outreach component is to organize several workshops and conferences aimed at developing communication and collaborative research between participants of the project, establishing scientific connections with other mathematicians, as well as fostering broader applications of this work.In 1999, Turaev introduced Homotopy Quantum Field Theories (HQFTs), which are generalizations of Topological Quantum Field Theories (TQFTs) studied by Schwartz, Witten, and Atiyah. HQFTs produce topological invariants of manifolds furnished with extra data that add supplementary topology/geometry to the context of TQFTs. Most of the theory of quantum invariants and HQFTs involves monoidal categories which have certain additional properties like being semi-simple. In various collaborations started in 2005, the team members developed a theory of re-normalized Quantum Invariants that derives non-trivial topological invariants from non-semi-simple categories. In this project the principal investigators will further use renormalization to develop non-trivial HQFTs, based on the examples coming from the theory of unrestricted quantum group. These new HQFTs should share the strength and the new features of the re-normalized Quantum Invariants. The principal investigators will further search for a physical interpretation of these new invariants.
受物理学启发的数学成功地为现代物理学的大多数复杂领域提供了背景和语言。 在这个项目中,主要研究人员的目标是创建新的代数和几何工具,帮助以精确的数学方式制定量子物理学的思想和方法。 具体而言,该团队将结合联合收割机成员过去的经验和成就,为具有额外结构的流形构建新的拓扑量子场论。受维滕的陈-西蒙斯理论和现在被称为维滕-雷舍季欣-图拉耶夫不变量的3-流形不变量的启发,主要研究人员将探索他们的新场论,目的是找到流形的拓扑不变量的物理定义。 这项工作是刺激了几个基本的例子,并将打开大门,以新的研究途径,代数,拓扑,几何,数学物理和相关领域的数学。该项目的更广泛影响属于两大类:辅导和外联。 研究小组的成员目前正在指导总共12名博士生。 他们将就与赠款主要目标有关的项目向研究生提供建议。 推广部分是组织几次讲习班和会议,旨在发展项目参与者之间的交流和合作研究,与其他数学家建立科学联系,以及促进这项工作的更广泛应用。1999年,Turaev介绍了同伦量子场论(HQFTs),这是Schwartz,维滕,阿蒂亚 HQFT产生的拓扑不变量的流形提供额外的数据,添加补充拓扑/几何的上下文中的TQFT。 大多数量子不变量和HQFT的理论都涉及具有某些附加性质(例如半简单)的monoidal范畴。 在2005年开始的各种合作中, 团队成员开发了一种重新规范化的量子不变量理论,该理论从非半简单类别中导出非平凡的拓扑不变量。 在这个项目中,主要研究人员将进一步使用重整化来开发非平凡的HQFT,基于来自非限制量子群理论的例子。 这些新的HQFT应该共享重新归一化的量子不变量的强度和新特征。 主要研究人员将进一步寻找这些新不变量的物理解释。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Holonomy braidings, biquandles and quantum invariants of links with SL2(C) flat connections
具有 SL2(C) 平面连接的完整编织、双分形和量子不变量
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:C. Blanchet;N. Geer;B. Patureau-Mirand;N. Reshetikhin
- 通讯作者:N. Reshetikhin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolai Reshetikhin其他文献
On Invariants of Graphs Related to Quantum $${\mathfrak {sl}(2)}$$ at Roots of Unity
论统一根处与量子 $${mathfrak {sl}(2)}$$ 相关的图的不变量
- DOI:
10.1007/s11005-009-0320-9 - 发表时间:
2009 - 期刊:
- 影响因子:1.2
- 作者:
Nathan Geer;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
ON 2 d YANG-MILLS THEORY AND INVARIANTS OF LINKSMICHAEL POLYAK AND
二维Yang-Mills理论和LINKSMICHAEL POLYAK和的不变量
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Michael Polyak;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
Graphical Calculus for Quantum Vertex Operators, I: The Dynamical Fusion Operator
量子顶点算子的图解演算,I:动态融合算子
- DOI:
10.1007/s00220-024-04984-x - 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Hadewijch De Clercq;Nicolai Reshetikhin;Jasper Stokman - 通讯作者:
Jasper Stokman
Flat Connections from Irregular Conformal Blocks
不规则保形块的扁平连接
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Babak Haghighat;Yihua Liu;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
Random Skew Plane Partitions with a Piecewise Periodic Back Wall
- DOI:
10.1007/s00023-011-0120-5 - 发表时间:
2011-06-28 - 期刊:
- 影响因子:1.300
- 作者:
Cedric Boutillier;Sevak Mkrtchyan;Nicolai Reshetikhin;Peter Tingley - 通讯作者:
Peter Tingley
Nicolai Reshetikhin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolai Reshetikhin', 18)}}的其他基金
Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1902226 - 财政年份:2019
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1601947 - 财政年份:2016
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1201391 - 财政年份:2012
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
Travel Support: Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
旅行支持:无限维李代数、量子群及其应用
- 批准号:
1059160 - 财政年份:2010
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
0901431 - 财政年份:2009
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
0601912 - 财政年份:2006
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
0307599 - 财政年份:2003
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
0070931 - 财政年份:2000
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
U.S.-German Cooperative Research on Discrete Integrable Systems
美德离散可积系统合作研究
- 批准号:
9603239 - 财政年份:1997
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
9700921 - 财政年份:1997
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 18.88万 - 项目类别:
Continuing Grant