Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
基本信息
- 批准号:9700921
- 负责人:
- 金额:$ 27.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
RESHETIKHIN The main theme of this proposal is the study of quantized universal enveloping algebras, their representations and their applications to low dimensional topology and to quantum integrable models. Among specific goals of the proposal are: q-W algebras their quantization and their role in the representation theory of quantum affine algebras, the duality aspects for q-W algebras, tau- functions as spherical functions on Poisson Lie groups and their quantization, various aspects of interrelations between quantum and classical integrable systems and representation theory. Recent decades were characterized by intense and productive interaction of mathematics and physics. Large part of this process was initiated in the study of classical and quantum integrable systems and developed from there to various questions related to conformal field theory and to a very productive developments in the string theory. On the mathematical side of this interaction are various aspects of algebra, geometry and topology. My research is focused mostly on the study of algebraic structures resulted from this interaction and inspired by it. They are remarkable not only because they are quite exceptional but also because they have important applications ranging from low dimensional topology and geometry to solid state physics.
列谢季欣 这个建议的主题是研究量子化的泛包络代数,它们的表示及其在低维拓扑和量子可积模型中的应用。 该提案的具体目标包括:q-W代数,它们的量子化以及它们在量子表示论中的作用。 量子仿射代数,对偶方面的q-W代数,tau函数作为球面函数的泊松李群和他们的量化,量子和经典可积系统和表示理论之间的相互关系的各个方面。 近几十年的特点是数学和物理学的密切和富有成效的相互作用。这一过程的很大一部分是在研究经典和量子可积系统时开始的,并从那里发展到与共形场论有关的各种问题,以及弦理论中非常富有成效的发展。 在这种相互作用的数学方面是代数,几何和拓扑学的各个方面。 我的研究主要集中在代数的研究上 这种相互作用产生的结构, 它们之所以引人注目,不仅是因为它们非常特殊,还因为它们具有 重要的应用范围从低维拓扑和几何固态物理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolai Reshetikhin其他文献
On Invariants of Graphs Related to Quantum $${\mathfrak {sl}(2)}$$ at Roots of Unity
论统一根处与量子 $${mathfrak {sl}(2)}$$ 相关的图的不变量
- DOI:
10.1007/s11005-009-0320-9 - 发表时间:
2009 - 期刊:
- 影响因子:1.2
- 作者:
Nathan Geer;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
ON 2 d YANG-MILLS THEORY AND INVARIANTS OF LINKSMICHAEL POLYAK AND
二维Yang-Mills理论和LINKSMICHAEL POLYAK和的不变量
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Michael Polyak;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
Graphical Calculus for Quantum Vertex Operators, I: The Dynamical Fusion Operator
量子顶点算子的图解演算,I:动态融合算子
- DOI:
10.1007/s00220-024-04984-x - 发表时间:
2024 - 期刊:
- 影响因子:2.4
- 作者:
Hadewijch De Clercq;Nicolai Reshetikhin;Jasper Stokman - 通讯作者:
Jasper Stokman
Flat Connections from Irregular Conformal Blocks
不规则保形块的扁平连接
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Babak Haghighat;Yihua Liu;Nicolai Reshetikhin - 通讯作者:
Nicolai Reshetikhin
Random Skew Plane Partitions with a Piecewise Periodic Back Wall
- DOI:
10.1007/s00023-011-0120-5 - 发表时间:
2011-06-28 - 期刊:
- 影响因子:1.300
- 作者:
Cedric Boutillier;Sevak Mkrtchyan;Nicolai Reshetikhin;Peter Tingley - 通讯作者:
Peter Tingley
Nicolai Reshetikhin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolai Reshetikhin', 18)}}的其他基金
Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1902226 - 财政年份:2019
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Homotopy Renormalization of Topological Field Theories
FRG:协作研究:拓扑场论的同伦重正化
- 批准号:
1664521 - 财政年份:2017
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1601947 - 财政年份:2016
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
1201391 - 财政年份:2012
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Travel Support: Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
旅行支持:无限维李代数、量子群及其应用
- 批准号:
1059160 - 财政年份:2010
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
0901431 - 财政年份:2009
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
Infinite Dimensional Lie Algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
- 批准号:
0601912 - 财政年份:2006
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
0307599 - 财政年份:2003
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Infinite Dimensional Lie Algebras, Quantum Groups, and their Applications
无限维李代数、量子群及其应用
- 批准号:
0070931 - 财政年份:2000
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
U.S.-German Cooperative Research on Discrete Integrable Systems
美德离散可积系统合作研究
- 批准号:
9603239 - 财政年份:1997
- 资助金额:
$ 27.26万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2022
- 资助金额:
$ 27.26万 - 项目类别:
Discovery Grants Program - Individual
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
- 批准号:
RGPIN-2016-04651 - 财政年份:2021
- 资助金额:
$ 27.26万 - 项目类别:
Discovery Grants Program - Individual
Representations in Infinite-Dimensional Lie Theory
无限维李理论中的表示
- 批准号:
RGPIN-2017-04280 - 财政年份:2021
- 资助金额:
$ 27.26万 - 项目类别:
Discovery Grants Program - Individual
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2021
- 资助金额:
$ 27.26万 - 项目类别:
Discovery Grants Program - Individual
Lie Groupoids and Infinite-Dimensional Dynamical Systems
李群群和无限维动力系统
- 批准号:
2008021 - 财政年份:2020
- 资助金额:
$ 27.26万 - 项目类别:
Continuing Grant
Representations in Infinite-Dimensional Lie Theory
无限维李理论中的表示
- 批准号:
RGPIN-2017-04280 - 财政年份:2020
- 资助金额:
$ 27.26万 - 项目类别:
Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
- 批准号:
2444690 - 财政年份:2020
- 资助金额:
$ 27.26万 - 项目类别:
Studentship
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
- 批准号:
RGPIN-2019-06170 - 财政年份:2020
- 资助金额:
$ 27.26万 - 项目类别:
Discovery Grants Program - Individual
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
- 批准号:
RGPIN-2016-04651 - 财政年份:2020
- 资助金额:
$ 27.26万 - 项目类别:
Discovery Grants Program - Individual
Enveloping algebras of infinite-dimensional Lie algebras
无限维李代数的包络代数
- 批准号:
EP/T018844/1 - 财政年份:2020
- 资助金额:
$ 27.26万 - 项目类别:
Research Grant