CIC: EAGER: Scalable Algebraic Visualization in the Cloud
CIC:EAGER:云中的可扩展代数可视化
基本信息
- 批准号:1060213
- 负责人:
- 金额:$ 11.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-10-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The requirements for large-scale scientific visualization systems and large-scale scientific databases are converging. Visualization systems are being equipped with rudimentary query processing capabilities, observing that simply "throwing datasets" through the graphics pipeline ignores the scalable restructuring, manipulation, and filtering required by realistic applications. Further, there is increasing emphasis on in situ visualization --- execution of visualization and data processing on a single platform to avoid data transfer costs and afford new optimizations. In particular, the role of cloud computing as a large-scale visualizaton platform in addition to a large-scale data processing platform is underexplored.In response to these pressures, the PI proposes a novel approach to the problem of scalable visualization, one informed by the algebraic query processing techniques developed by the database community coupled with recent advances in data-intensive scalable computing latforms such as MapReduce, Dryad, and their contemporaries. Specifically, the PI is developing an algebra of scalable visualization operators specialized for manipulating and visualizing mesh-structured datasets. The PI's previous work on an algebra for unstructured grid datasets found in finite element simulations provides a foundation, but does not support efficient parallel processing and cannot express certain common visualization tasks. Other existing systems favor depth over breadth, focusing on optimizations for specific visualization algorithms on specific hardware rather than a generic platform for visual analytics that can run on the shared-nothing clusters of commodity computers typically found in the cloud. The new approach, being developed and deployed on the Windows Azure platform, provides a core set of scalable primitives for manipulating mesh datasets using shared-nothing architectures, capable of expressing a variety of visualization algorithms, and amenable to algebraic reasoning and optimization.For further information see the project web page: http://visdb.cs.washington.edu
对大型科学可视化系统和大型科学数据库的需求正在融合。可视化系统正在配备基本的查询处理能力,观察到简单地通过图形管道“抛出数据集”忽略了现实应用程序所需的可伸缩重组、操作和过滤。此外,越来越重视现场可视化-在单一平台上执行可视化和数据处理,以避免数据传输成本并提供新的优化。特别是,云计算作为大规模数据处理平台之外的大规模可视化平台的作用还没有得到充分的发挥。针对这些压力,PI提出了一种新的方法来解决可伸缩可视化问题,该方法的灵感来自于数据库社区开发的代数查询处理技术,以及数据密集型可伸缩计算的最新进展,如MapReduce、Dryad和它们的同代人。具体地说,PI正在开发一种可伸缩可视化操作符的代数,专门用于操作和可视化网格结构的数据集。PI以前在有限元模拟中发现的非结构化网格数据集的代数上的工作提供了基础,但不支持高效的并行处理,并且不能表达某些常见的可视化任务。其他现有的系统更注重深度而不是广度,专注于针对特定硬件上的特定可视化算法进行优化,而不是一个通用的视觉分析平台,该平台可以在通常在云中找到的不共享的商用计算机集群上运行。新方法在Windows Azure平台上开发和部署,提供了一组核心的可伸缩原语,用于使用无共享体系结构操作网格数据集,能够表达各种可视化算法,并服从代数推理和优化。有关更多信息,请参阅项目网页:http://visdb.cs.washington.edu
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bill Howe其他文献
Optimizing Large-Scale Semi-Naïve Datalog Evaluation in Hadoop
优化 Hadoop 中的大规模半简单数据记录评估
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Marianne Shaw;Paraschos Koutris;Bill Howe;Dan Suciu - 通讯作者:
Dan Suciu
Perfopticon: Visual Query Analysis for Distributed Databases
Perfopticon:分布式数据库的可视化查询分析
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Dominik Moritz;D. Halperin;Bill Howe;Jeffrey Heer - 通讯作者:
Jeffrey Heer
VizioMetrix: A Platform for Analyzing the Visual Information in Big Scholarly Data
VizioMetrix:分析学术大数据中的视觉信息的平台
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Po;Jevin D. West;Bill Howe - 通讯作者:
Bill Howe
SQLShare : Scientific Workflow via Relational View Sharing
SQLShare:通过关系视图共享的科学工作流程
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Bill Howe;F. Ribalet;D. Halperin;Sagar Chitnis;E. Armbrust - 通讯作者:
E. Armbrust
MusicDB: A Platform for Longitudinal Music Analytics
MusicDB:纵向音乐分析平台
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jeremy Hyrkas;Bill Howe - 通讯作者:
Bill Howe
Bill Howe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bill Howe', 18)}}的其他基金
Collaborative Research: Framework for Integrative Data Equity Systems
协作研究:综合数据公平系统框架
- 批准号:
1934405 - 财政年份:2019
- 资助金额:
$ 11.76万 - 项目类别:
Continuing Grant
Workshop on Foundations of Responsible Data Science (FoRDS)
负责任数据科学基础研讨会 (FoRDS)
- 批准号:
1902959 - 财政年份:2019
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
BIGDATA: F: Collaborative Research: Foundations of Responsible Data Management
大数据:F:协作研究:负责任的数据管理的基础
- 批准号:
1740996 - 财政年份:2017
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
Collaborative Research: Conceptualizing An Institute for Empowering Long Tail Research
合作研究:构想一个促进长尾研究的研究所
- 批准号:
1216879 - 财政年份:2012
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Database-As-A-Service for Long Tail Science
III:媒介:合作研究:长尾科学的数据库即服务
- 批准号:
1064505 - 财政年份:2011
- 资助金额:
$ 11.76万 - 项目类别:
Continuing Grant
Where the Ocean Meets the Cloud: Ad Hoc Longitudinal Analysis and Collaboration Over Massive Mesh Data
海洋与云的交汇:海量网格数据的临时纵向分析和协作
- 批准号:
0844572 - 财政年份:2009
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
相似海外基金
EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
- 批准号:
2242049 - 财政年份:2023
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
- 批准号:
2240309 - 财政年份:2023
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing "Scalable integration of ion-photon quantum information converters (IP-QIC) on fiber for networking and computing applications"
EAGER:量子制造“离子光子量子信息转换器(IP-QIC)在光纤上的可扩展集成,用于网络和计算应用”
- 批准号:
2240227 - 财政年份:2023
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
EAGER: Scalable Climate Modeling using Message-Passing Recurrent Neural Networks
EAGER:使用消息传递循环神经网络进行可扩展的气候建模
- 批准号:
2335773 - 财政年份:2023
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
EAGER: Systems of Holographic Optical Tags for Scalable and Collaborative Mobile Infrastructures
EAGER:用于可扩展和协作移动基础设施的全息光学标签系统
- 批准号:
2226888 - 财政年份:2022
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
EAGER: Urban Sensing of Pedestrians through Integrated, Cost-Effective, and Scalable Audio Sensor Networks
EAGER:通过集成、经济高效且可扩展的音频传感器网络实现城市行人感知
- 批准号:
2203408 - 财政年份:2022
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
EAGER: Scalable, Content-Based, Domain-Agnostic Search of Scientific Data through Concise Topological Representations
EAGER:通过简洁的拓扑表示对科学数据进行可扩展、基于内容、与领域无关的搜索
- 批准号:
2136744 - 财政年份:2021
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
EAGER: CCF: SHF: Scalable Software Verification through Automated Derivation of Domain-Specific Optimization Tactics
EAGER:CCF:SHF:通过自动推导特定领域优化策略的可扩展软件验证
- 批准号:
2139845 - 财政年份:2021
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
EAGER: Exploration of topological self-organizing non-linear dynamical systems with memory as efficient scalable computing fabric
EAGER:探索以内存作为高效可扩展计算结构的拓扑自组织非线性动力系统
- 批准号:
2034558 - 财政年份:2020
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant
EAGER: Ultra-Efficient, Scalable, and Fault-Tolerant DC-DC Converters for Medium/High-Voltage Applications
EAGER:适用于中/高压应用的超高效、可扩展且容错的 DC-DC 转换器
- 批准号:
1937746 - 财政年份:2019
- 资助金额:
$ 11.76万 - 项目类别:
Standard Grant














{{item.name}}会员




