EAGER: Quantum Manufacturing "Scalable integration of ion-photon quantum information converters (IP-QIC) on fiber for networking and computing applications"
EAGER:量子制造“离子光子量子信息转换器(IP-QIC)在光纤上的可扩展集成,用于网络和计算应用”
基本信息
- 批准号:2240227
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This grant will support research advancing the precision manufacturing of fiber optic cables housing integrated quantum ionic processors for future applications in a scalable network. To create such a network, existing state-of-the-art information-processing quantum hardware, such as ionic processors, must be accompanied by developing adequate interconnects to allow the scalable integration of multiple processors as nodes in the more extensive cooperative network. For this integration, fiber optics, the workhorse of digital communication, needs to undergo a quantum-enabling transformation. This grant will pursue the manufacturing of custom fiber that is capable of lossless translation of quantum-coherent information from the stationary form encoded on the ionic qubit processor into the flying qubits transmitted by photons through the communication links and vice versa. This research will deliver the optimized design for scalable manufacturing of a new class of fibers, in which linear ion arrays are integral sections of the fiber light-guiding core. Such a contiguous integration of the stationary-qubit processors into the optical path of the flying-qubit streamline will enable the unification of isolated processors into a synchronized network capable of performing information processing tasks of a respectively scaled-up complexity. The project's educational component will focus on outreach to attract underrepresented groups to pursue education in Quantum Information Science and launch the internship program in Quantum Manufacturing in industries focused on rekindling domestic manufacturing.The grant will advance the manufacturing engineering research of a high-fidelity Ionic-Photonic Quantum Information Converter (IP-QIC) integrating ionic processors into a scalable quantum network. It will explore the theory-to-practice optimization of the fabrication of fiber-optic systems in which arrays of trapped ions replace sections of optically guiding core. Combining a thermal draw of fiber, in which a quadrupole of electrodes is concentric to the optical core, followed by selective etching of axial gaps in the fiber cladding, and controlled reflow by a capillary instability of the resulting gap-edges into micro-lenses, a fiber system in which multiple Paul traps can be house axially along the fiber will be fabricated. The Paul traps will be loaded in Ultra-High Vacuum (UHV) with linear ion arrays concentrically aligned with the optical cores of the fiber, integrating them into a single quantum-coherent system. The fiber-optic theory claims no cut-off for the fundamental guided optical mode for any cylindrically symmetric system of refractive index higher than its environment, such as that of a linear ion array in a vacuum. Thus, a fiber system in which the ion arrays are the integral sections of the optical core, forming an uninterrupted, continuous lightguide, is possible. Such a seamless arrangement is expected to boost interaction efficiency between the photonic and ionic qubits, resulting in a conversion of quantum information back and forth between those two physical forms. The project will classify the cutting-edge fiber manufacturing approaches for precision in materializing the quantum-information systems of increasing complexity. IP-QIC is a novel physical arrangement that opens for experimental investigation hitherto unexplored correlation terms in the overall Hamiltonian of the system, describing the coupling of the fiber's optical modes to the ion array's phononic and excitonic states. Thus, IP-QIC will open a niche in quantum algorithmics, exploring the behavior of complex quantum matter, such as strongly correlated and topological, as well as data routing protocols for robust and extensible software-defined quantum networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔赠款将支持推进光纤电缆精密制造的研究,这些光纤电缆将集成量子离子处理器,用于可扩展网络中的未来应用。为了创建这样一个网络,现有的最先进的信息处理量子硬件,如离子处理器,必须伴随着开发足够的互连,以允许多个处理器作为更广泛的合作网络中的节点的可扩展集成。为了实现这种集成,光纤,数字通信的主力,需要经历量子改造。该补助金将用于制造定制光纤,该光纤能够将量子相干信息从离子量子比特处理器上编码的静止形式无损转换为光子通过通信链路传输的飞行量子比特,反之亦然。这项研究将提供一种新型光纤的可扩展制造的优化设计,其中线性离子阵列是光纤光导芯的组成部分。静止量子位处理器到飞行量子位流线的光路中的这种连续集成将使得能够将隔离的处理器统一到能够执行相应按比例增加的复杂性的信息处理任务的同步网络中。该项目的教育部分将侧重于推广,以吸引代表性不足的群体接受量子信息科学教育,并在专注于重振国内制造业的行业中推出量子制造实习计划。该赠款将推进高保真离子光子量子信息转换器(IP-QIC)的制造工程研究,将离子处理器集成到可扩展的量子网络中。它将探索光纤系统制造的理论到实践的优化,其中被捕获的离子阵列取代部分光导核心。结合光纤的热拉制,其中电极的四极与光学芯同心,随后选择性地蚀刻光纤包层中的轴向间隙,以及通过所得间隙边缘的毛细不稳定性控制回流到微透镜中,将制造其中可以沿光纤轴向沿着容纳多个Paul陷阱的光纤系统。保罗陷阱将被装载在超高真空(UHV)中,线性离子阵列与光纤的光学核心同心对齐,将它们集成到一个量子相干系统中。光纤理论声称,对于折射率高于其环境的任何圆柱对称系统(例如真空中的线性离子阵列),基本导光模式没有截止。因此,其中离子阵列是形成不间断的连续光导的光学芯的整体部分的光纤系统是可能的。这种无缝的安排有望提高光子和离子量子位之间的相互作用效率,从而导致量子信息在这两种物理形式之间来回转换。该项目将对尖端的光纤制造方法进行分类,以精确实现日益复杂的量子信息系统。IP-QIC是一种新颖的物理布置,其为迄今为止未探索的系统的整体哈密顿量中的相关项的实验研究打开,描述光纤的光学模式与离子阵列的声子和激子状态的耦合。因此,IP-QIC将在量子算法中开辟一个利基市场,探索复杂量子物质的行为,如强相关和拓扑,以及用于强大和可扩展的软件定义量子网络的数据路由协议。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Gumennik其他文献
Correction to: 3D Printing in Fiber-Device Technology
- DOI:
10.1007/s42765-021-00074-y - 发表时间:
2021-04-16 - 期刊:
- 影响因子:21.300
- 作者:
Louis van der Elst;Camila Faccini de Lima;Merve Gokce Kurtoglu;Veda Narayana Koraganji;Mengxin Zheng;Alexander Gumennik - 通讯作者:
Alexander Gumennik
Industrial energy forecasting using dynamic attention neural networks
使用动态注意力神经网络的工业能源预测
- DOI:
10.1016/j.egyai.2025.100504 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.600
- 作者:
Nicholas Majeske;Shreyas Sunil Vaidya;Ryan Roy;Abdul Rehman;Hamed Sohrabpoor;Tyson Miller;Wenhui Li;C.R. Fiddyment;Alexander Gumennik;Raj Acharya;Vikram Jadhao;Prateek Sharma;Ariful Azad - 通讯作者:
Ariful Azad
Towards Digital Manufacturing of Smart Multimaterial Fibers
- DOI:
10.1186/s11671-019-3031-x - 发表时间:
2019-06-18 - 期刊:
- 影响因子:4.500
- 作者:
Camila Faccini de Lima;Louis A. van der Elst;Veda Narayana Koraganji;Mengxin Zheng;Merve Gokce Kurtoglu;Alexander Gumennik - 通讯作者:
Alexander Gumennik
Alexander Gumennik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Gumennik', 18)}}的其他基金
CAREER: Liquid-Phase Processing of Fiber-Based Electronic and Photonic Materials and Devices
职业:基于纤维的电子和光子材料及器件的液相处理
- 批准号:
2143467 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
- 批准号:
2242049 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Monolithic integration of telecommunication-band quantum emitters in the 4H-SiC-on-insulator platform
EAGER:量子制造:电信频段量子发射器在绝缘体上 4H-SiC 平台中的单片集成
- 批准号:
2240420 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
- 批准号:
2240501 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
- 批准号:
2240246 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
- 批准号:
2240309 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
- 批准号:
2240245 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Atomic-layer Etching Manufacturing Processes for High Performance Superconducting Quantum Devices
EAGER:量子制造:高性能超导量子器件的原子层蚀刻制造工艺
- 批准号:
2234390 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Manufacturing Integrated Quantum Sensing and Quantum Photonic Technologies Through Direct Bonding of Diamond Membranes
EAGER:量子制造:通过直接粘合金刚石膜制造集成量子传感和量子光子技术
- 批准号:
2240399 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
- 批准号:
2240414 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: 3D Microfabricated Ion Traps
EAGER:量子制造:3D 微制造离子阱
- 批准号:
2240291 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant