G&V: Medium: Collaborative Research: Large Data Visualization Using An Interactive Machine Learning Framework

G

基本信息

  • 批准号:
    1065025
  • 负责人:
  • 金额:
    $ 54.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2015-05-31
  • 项目状态:
    已结题

项目摘要

Abstract - Machiraju, Rangarajan, and ThompsonAs computer power continues to increase, the complexity of simulations also increases thereby producing datasets of unprecedented size. Without effective analysis tools, results from these large-scale simulations cannot be utilized to their fullest extent. This research addresses the problem of large-data visualization and exploration by employing interactive multi-scale machine learning, which exploits an efficient feature-based, multi-resolution representation of the data. The investigators are leveraging methods from the field of machine learning to perform two distinct tasks: identify regions of interest and enhance robustness of feature detection algorithms. The primary outcome of this effort is the realization of a framework for exploring large datasets. Further, this work is introducing a large body of work in machine learning to the field of visualization. Successful completion of this research will help overcome the brittleness of existing visualization methods and foster expedient discovery in many areas of science and engineering.The multi-resolution techniques developed here will employ a two-fold strategy. First, semi-supervised learning based on training with the domain expert is used to develop strategies for selective spatial and temporal refinement of the data. A classifier is constructed to tag the output of the coarse resolution feature detection (i.e. regions) as either interesting or not interesting. Then at the finest scale, interesting local data chunks containing features of interest are identified for further analysis. Second, several local feature detection algorithms, or weak classifiers, are combined into a single, more robust compound classifier using adaptive boosting, or AdaBoost, and a data adaptive variant called CAVIAR that facilitates validated feature detection. Ideally, the compound classifier combines the best of all weak classifiers as they respond to the underlying physical signal. This research is demonstrating the effectiveness of these methods by applying existing local detection algorithms for visualizing vortices in turbulent flow fields.
摘要-Mchiraju、Rangarajan和Thompson随着计算机能力的不断增强,模拟的复杂性也随之增加,从而产生了前所未有的数据集。如果没有有效的分析工具,这些大规模模拟的结果就不能得到最充分的利用。这项研究通过使用交互式多尺度机器学习来解决大数据可视化和探索的问题,它利用了一种高效的基于特征的多分辨率数据表示。研究人员正在利用机器学习领域的方法来执行两项不同的任务:识别感兴趣的区域和增强特征检测算法的稳健性。这一努力的主要成果是实现了探索大型数据集的框架。此外,这项工作正在将机器学习中的大量工作引入可视化领域。这项研究的成功完成将有助于克服现有可视化方法的脆弱性,并在许多科学和工程领域促进权宜之计的发现。这里开发的多分辨率技术将采用双重策略。首先,基于与领域专家的训练的半监督学习被用于制定选择性地对数据进行空间和时间细化的策略。构造分类器以将粗分辨率特征检测(即区域)的输出标记为感兴趣或不感兴趣。然后,在最精细的尺度上,识别包含感兴趣的特征的有趣的本地数据块以供进一步分析。其次,使用自适应增强(AdaBoost)将几个局部特征检测算法或弱分类器组合成一个更健壮的复合分类器,以及一个称为CAVIAR的数据自适应变体,该变量有助于验证特征检测。理想情况下,复合分类器结合了所有弱分类器中最好的,因为它们响应潜在的物理信号。这项研究通过应用现有的局部检测算法来显示湍流流场中的涡旋,从而证明了这些方法的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raghu Machiraju其他文献

Raghu Machiraju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raghu Machiraju', 18)}}的其他基金

Collaborative Research: Autonomous Computing Materials
合作研究:自主计算材料
  • 批准号:
    1940168
  • 财政年份:
    2019
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Continuing Grant
Spokes: MEDIUM: MIDWEST: Collaborative: Community-Driven Data Engineering for Substance Abuse Prevention in the Rural Midwest
辐条:媒介:中西部:协作:社区驱动的数据工程,用于中西部农村地区的药物滥用预防
  • 批准号:
    1761969
  • 财政年份:
    2018
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
SCC-Planning: Using Innovations in Big Data and Technology to Address the High Rate of Infant Mortality in Greater Columbus Ohio
SCC-Planning:利用大数据和技术创新解决俄亥俄州大哥伦布市婴儿死亡率高的问题
  • 批准号:
    1737560
  • 财政年份:
    2017
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
BCSP: ABI Innovation: Collaborative Research: Predicting changes in protein activity from changes in sequence by identifying the underlying Biophysical Conditional Random Field
BCSP:ABI 创新:协作研究:通过识别潜在的生物物理条件随机场,根据序列变化预测蛋白质活性的变化
  • 批准号:
    1262469
  • 财政年份:
    2014
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
SOFTWARE: Framework for Mining Large and Complex Scientific Datasets
软件:挖掘大型复杂科学数据集的框架
  • 批准号:
    0234273
  • 财政年份:
    2003
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Continuing Grant
ITR/NGS: A Framework for Discovery, Exploration and Analysis of Evolutionary Simulation Data (DEAS)
ITR/NGS:进化模拟数据发现、探索和分析的框架 (DEAS)
  • 批准号:
    0326386
  • 财政年份:
    2003
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Continuing Grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
  • 批准号:
    0196242
  • 财政年份:
    2000
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Continuing grant
CAREER: On the Assessment of Volume Rendering Algorithms in Visual Computing
职业:视觉计算中体积渲染算法的评估
  • 批准号:
    9734483
  • 财政年份:
    1998
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321103
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 54.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了